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Efficient Implementation
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14.1 Introduction

Many public-key encryption and digital signature schemes, and some hash functions (see
§9.4.3), require computationsin Z,,, the integers modulo m (m is alarge positive integer
which may or may not beaprime). For example, the RSA, Rabin, and ElGamal schemesre-
quire efficient methods for performing multiplication and exponentiationin Z,,,. Although
Z, is prominent in many aspects of modern applied cryptography, other algebraic struc-
turesarealsoimportant. Theseinclude, but arenot limited to, polynomial rings, finitefields,
and finite cyclic groups. For example, the group formed by the points on an elliptic curve
over afinite field has considerable appeal for various cryptographic applications. The effi-
ciency of aparticular cryptographic scheme based on any one of these algebraic structures
will depend on anumber of factors, such as parameter size, time-memory tradeoffs, process-
ing power available, software and/or hardware optimization, and mathematical algorithms.

Thischapter is concerned primarily with mathematical algorithmsfor efficiently carry-
ing out computationsin the underlying algebraic structure. Since many of the most widely
implemented techniques rely on Z,,,, emphasis is placed on efficient algorithms for per-
forming the basic arithmetic operationsin this structure (addition, subtraction, multiplica-
tion, division, and exponentiation).

In some cases, several algorithmswill be presented which perform the same operation.
For example, a number of techniques for doing modular multiplication and exponentiation
are discussed in §14.3 and §14.6, respectively. Efficiency can be measured in numerous
ways; thus, it isdifficult to definitively state which algorithmisthe best. An algorithm may
be efficient in the time it takes to perform a certain algebrai ¢ operation, but quite inefficient
in the amount of storageit requires. One a gorithm may require more code space than an-
other. Depending on the environment in which computationsareto be performed, one algo-
rithm may be preferable over another. For example, current chipcard technology provides
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very limited storage for both precomputed values and program code. For such applications,
an algorithm which is less efficient in time but very efficient in memory requirements may
be preferred.

The algorithms described in this chapter are those which, for the most part, have re-
ceived considerable attention in the literature. Although some attempt is made to point out
their relative merits, no detailed comparisons are given.

Chapter outline

14.2

§14.2 dedls with the basic arithmetic operations of addition, subtraction, multiplication,
squaring, and division for multiple-precision integers. §14.3 describesthe basic arithmetic
operationsof addition, subtraction, and multiplicationin Z.,,. Techniquesdescribedfor per-
forming modular reduction for an arbitrary modulus m are the classical method (§14.3.1),
Montgomery’s method (§14.3.2), and Barrett’s method (§14.3.3). §14.3.4 describes are-
duction procedure ideally suited to moduli of a special form. Greatest common divisor
(ged) agorithms are the topic of §14.4, including the binary gcd algorithm (§14.4.1) and
Lehmer’s ged algorithm (§14.4.2). Efficient algorithmsfor performing extended gcd com-
putations are given in §14.4.3. Modular inverses are also considered in §14.4.3. Garner’s
algorithm for implementing the Chinese remainder theorem can befoundin §14.5. §14.6is
atreatment of several of the most practical exponentiation algorithms. §14.6.1 deals with
exponentiation in general, without consideration of any special conditions. §14.6.2 looks
at exponentiation when the base is variable and the exponent is fixed. §14.6.3 considersa-
gorithmswhich take advantage of afixed-base element and variable exponent. Techniques
involving representing the exponent in non-binary formare givenin §14.7; recoding the ex-
ponent may allow significant performance enhancements. §14.8 contains further notes and
references.

Multiple-precision integer arithmetic

This section deal s with the basic operations performed on multiple-precision integers: ad-
dition, subtraction, multiplication, squaring, and division. The algorithms presentedin this
section are commonly referred to as the classical methods.

14.2.1 Radix representation

141

14.2

Positive integers can be represented in various ways, the most common being base 10. For
example, a = 123 base 10 meansa = 1-102+2-10' +3-10°. For machine computations,
base 2 (binary representation) is preferable. If @ = 1111011 base 2, thena = 26 + 25 +
24 423 40-22 42 420,

Fact If b > 2 isan integer, then any positiveinteger a can be expressed uniquely asa =
anb™ + an_1b" 1+ +a1b+ ag, wherea; isaninteger with0 < a; < bfor0 < i < n,
and a,, # 0.

Definition The representation of a positive integer a as a sum of multiples of powers of
b, asgivenin Fact 14.1, is called the base b or radix b representation of a.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§14.2 Multiple-precision integer arithmetic 593

14.3 Note (notation and terminology)

14.4

14.5

14.6

(i) Thebaseb representation of a positiveinteger a givenin Fact 14.1isusually written
asa = (apan—1---a1a9)p. Theintegersa;, 0 < i < n, are caled digits. a,, is
called the most significant digit or high-order digit; a¢ the least significant digit or
low-order digit. If b = 10, the standard notationisa = ana,_1-- - aiag.

(ii) It is sometimes convenient to pad high-order digits of a base b representation with
0’s; such a padded number will also be referred to as the base b representation.

(iii) If (anan—1---arag)p isthebaseb representation of « and a,, # 0, thenthe precision
orlengthof aisn+1. If n = 0, thena iscalled asingle-precisioninteger; otherwise,
a isamultiple-precisioninteger. a = 0 isalso asingle-precision integer.

The division algorithm for integers (see Definition 2.82) provides an efficient method
for determining the base b representation of anon-negativeinteger, for agivenbaseb. This
providesthe basisfor Algorithm 14.4.

Algorithm Radix b representation

INPUT: integersa and b, a > 0, b > 2.
OUTPUT: the base b representationa = (a, - - - a1ag)p, Wheren > 0 anda,, #0ifn > 1.

1 <0, x¢=a, q<| 7], ai+—=x — qb. (|-] isthefloor function; see page 49.)
2. Whileg > 0, do the following:

21 ii+1, x¢q, ¢+|F], ai+x —qgb.
3. Return((aiai,l e L’Llao)).

Fact If (anan—1---a1ag)s IS the base b representation of a and k is a positive integer,
then (uju;_1 - - - utug)yx IS the base b* representation of a, wherel = [(n + 1)/k] — 1,
wp =300 @b fOr0 < i <1 —1,andwy = 370" a7,

Example (radix b representation) The base 2 representation of ¢ = 123 is(1111011)s.
Thebase 4 representation of a is easily obtained from its base 2 representation by grouping
digitsin pairsfromtheright: a = ((1)2(11)2(10)2(11)2)4 = (1323)4. O

Representing negative numbers

Negative integers can be represented in several ways. Two commonly used methods are:
1. signed-magnitude representation
2. complement representation.

These methods are described below. The algorithms provided in this chapter all assume a
signed-magnitude representation for integers, with the sign digit being implicit.

(i) Signed-magnitude representation

The sign of an integer (i.e., either positive or negative) and its magnitude (i.e., absolute
value) are represented separately in a signed-magnitude representation. Typically, a posi-
tiveinteger isassigned asign digit 0, while anegative integer isassigned asign digit b — 1.
For n-digit radix b representations, only 2b™~! sequences out of the b™ possible sequences
areutilized: precisely b»~! — 1 positiveintegersand b~ ! — 1 negativeintegers can be rep-
resented, and 0 hastwo representations. Table 14.1 illustrates the binary signed-magnitude
representation of the integersin therange [7, —7].

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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Signed-magnitude representation has the drawback that when certain operations (such
as addition and subtraction) are performed, the sign digit must be checked to determine the
appropriate manner to perform the computation. Conditional branching of this type can be
costly when many operations are performed.

(i) Complement representation

Addition and subtraction using complement representation do not reguire the checking of
the sign digit. Non-negative integersin the range [0, 5"~ — 1] are represented by base b
seguences of length n with the high-order digit being 0. Suppose x is a positive integer
in this range represented by the sequence (z,,z,—1 - - - Z120)p Wherez,, = 0. Then —z is
represented by the sequencez = (T, Zp—1 - - T1To) + 1 wherez; = b—1—xz; and + isthe
standard additionwith carry. Table 14.1 illustrates the binary complement representation of
the integersin the range [—7, 7]. In the binary case, complement representation is referred
to as two’s complement representation.

Sequence Signed- Two's Sequence Signed- Two's
magnitude | complement magnitude | complement
0111 7 7 1111 -7 -1
0110 6 6 1110 —6 -2
0101 5 5 1101 -5 -3
0100 4 4 1100 —4 —4
0011 3 3 1011 -3 -5
0010 2 2 1010 -2 —6
0001 1 1 1001 -1 -7
0000 0 0 1000 -0 -8

Table 14.1: Sgned-magnitude and two’'s complement representations of integersin [—7, 7].

14.2.2 Addition and subtraction

14.7

14.8

Addition and subtraction are performed on two integers having the same number of base b
digits. To add or subtract two integers of different lengths, the smaller of the two integers
isfirst padded with 0's on the l€ft (i.e., in the high-order positions).

Algorithm Multiple-precision addition

INPUT: positiveintegersxz and y, each having n + 1 base b digits.
OUTPUT: thesum z + y = (wp4+1w, - - - wiwo)p iN radix b representation.
1. c«0 (cisthecarry digit).
2. For i from 0 to n do the following:
2.1 wi<(x; +y; + ¢) mod b.
2.2 If (z; + y; + ¢) < bthen c¢+0; otherwise c+1.
3. wpy1é-c.
4. Return((wp4+1wn, - - - wiwp)).

Note (computational efficiency) The base b should be chosen so that (z; + y; + ¢) mod b
can be computed by the hardware on the computing device. Some processors have instruc-
tion sets which provide an add-with-carry to facilitate multiple-precision addition.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§14.2 Multiple-precision integer arithmetic 595

14.9 Algorithm Multiple-precision subtraction

INPUT: positiveintegers z and y, each having n + 1 base b digits, with z > v.
OUTPUT: thedifferencex — y = (wnwpn—1 - - - wiwp)p in radix b representation.

1. 0.
2. For i from 0 to n do the following:

2.1 wi<(x; —y; + ¢) mod b.

2.2 If (z; — y; + ¢) > 0 then ¢<—0; otherwise c+— — 1.
3. Return((wnwp—1 - - - wiwp)).

14.10 Note (eliminating the requirement x > y) If the relative magnitudes of the integers x
and y are unknown, then Algorithm 14.9 can be modified as follows. On termination of
the algorithm, if ¢ = —1, then repeat Algorithm 14.9 withz = (00---00), andy =
(wpwp—1 -+ - wWrwp)p. Conditional checking on the relative magnitudesof = and y can aso
be avoided by using a complement representation (§14.2.1(ii)).

14.11 Example (modified subtraction) Let x = 3996879 and y = 4637923 in base 10, so that
x < y. Table14.2 showsthe steps of the modified subtraction algorithm (cf. Note 14.10). O

First execution of Algorithm 14.9 Second execution of Algorithm 14.9
i 6 5 4 3 2 10 i 6 5 4 3 2 1 0
Z; 39 9 6 8 7 9 Ti 0 0 0 0 0 0 0
Yi 4 6 3 7 9 2 3 Yi 9 3 5 8 9 5 6
w; 9 3 5 8 9 5 6 w; 0 6 4 1 0 4 4
c|-10 0 -1 -1 0 O c|-1 -1 -1 -1 -1 -1 -1

Table 14.2: Modified subtraction (see Example 14.11).

14.2.3 Multiplication

Let z and y be integers expressed in radix b representation: = = (z,Tn—1 - T120)p and
y = (y+yt—1- - y1Y0)p- Theproduct z - y will have at most (n + ¢ + 2) base b digits. Al-
gorithm 14.12 is areorganization of the standard pencil-and-paper method taught in grade
school. A single-precision multiplication means the multiplication of two base b digits. If
x; andy; aretwo base b digits, then z; - y; can bewrittenas z; - y; = (uv),, wherew and
v arebase b digits, and u may be 0.

14.12 Algorithm Multiple-precision multiplication

INPUT: positiveintegersz and y havingn + 1 and ¢ + 1 base b digits, respectively.
OUTPUT: the product - y = (w441 - - - wiwp)p N radix b representation.
1. Forifrom0to (n + ¢+ 1) do: w;<«0.
2. For i from 0 to ¢ do the following:
2.1 0.
2.2 For j from 0 to n do the following:
Compute (uv)y = witj + x5 - ¥ + ¢, and set w4 j+v, cu.
2.3 Witnt+1$U.
3. Return((wn+t+1 . . -wlwo)).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



596 Ch. 14 Efficient Implementation

14.13 Example (multiple-precision multiplication) Take x = zzzaxiz9 = 9274 andy =
yoy1y0 = 847 (base 10 representations), sothat n = 3 and ¢ = 2. Table 14.3 shows

the steps performed by Algorithm 14.12 to compute z - y = 7855078. O
Li jleclwiitayitelu v w[ws|wi[ws[w][w [ wo]
0 01]0 0+28+0 28 0 0 0 0 0 0 8

1|2 0+49+2 5 (1 0 0 0 0 0 1 8
215 0+14+5 119 0 0 0 0 9 1 8
3|1 0+63+1 6 |4 0 0 6 4 9 1 8
1 00 1+164+0 1|7 0 0 6 4 9 7 8
1|1 9+28+1 3|8 0 0 6 4 8 7 8
213 44843 115 0 0 6 5 8 7 8
3|1 6+4+36+1 4 (3 0 4 3 5 8 7 8
2 010 8+32+0 410 0 4 3 5 0 7 8
1|4 5+56+4 6 |5 0 4 3 5 0 7 8
216 3+16+6 25 0 4 5 5 0 7 8
3] 2 44+72+2 718 7 8 5 5 0 7 8

Table 14.3: Multiple-precision multiplication (see Example 14.13).

14.14 Remark (pencil-and-paper method) The pencil-and-paper method for multiplying z =
9274 and y = 847 would appear as

9 2 7 4
x 8 4 7
6 4 9 1 8 (row 1)
3 7 0 9 6 (row 2)
7T 4 1 9 2 (row 3)
7T 8 5 5 0 7 8

The shaded entriesin Table 14.3 correspond to row 1, row 1 + row 2, and row 1 + row 2 +
row 3, respectively.

14.15 Note (computational efficiency of Algorithm 14.12)

(i) The computationally intensive portion of Algorithm 14.12 is step 2.2. Computing
wi+; + x; - y; + c is caled the inner-product operation. Since w;+;, z;, y; and ¢
areal base b digits, the result of an inner-product operationisat most (b—1) + (b —
1)2 + (b—1) = b? — 1 and, hence, can be represented by two base b digits.

(i) Algorithm 14.12 requires (n + 1)(t + 1) single-precision multiplications.

(iii) It isassumed in Algorithm 14.12 that single-precision multiplications are part of the
instruction set on a processor. The quality of the implementation of this instruction
iscrucial to an efficient implementation of Algorithm 14.12.

14.2.4 Squaring

Inthe preceding algorithms, (uv);, hasboth « and v as single-precisionintegers. Thisnota
tion is abused in this subsection by permitting u to be a double-precision integer, such that
0 <u<2(b-—1). Thevaluewv will aways be single-precision.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§14.2 Multiple-precision integer arithmetic 597

14.16 Algorithm Multiple-precision squaring

INPUT: positiveinteger ¢ = (z4—1&¢—2 - - £1Z0)b-
OUTPUT: z - z = x? in radix b representation.
1. For ¢ from0 to (2t — 1) do: w;<0.
2. ForifromO0to (¢ — 1) do thefollowing:
2.1 (uv)pwa; + T; + Ty, Wo—v, CU.
2.2 For j from (i + 1) to (¢ — 1) do the following:
(W0)p—witj + 22 - T + ¢, Wig;4¢v, cu.
2.3 wiiéu.
3. Return((w2t,1w2t,2 . wlwo)b).

14.17 Note (computational efficiency of Algorithm 14.16)

(i) (overflow) In step 2.2, u can be larger than a single-precision integer. Since w; ;
isawayssettov, wip; < b—1. If ¢ < 2(b— 1), then wiy; + 2z;2; + ¢ <
(b—1)+2(b—1)24+2(b—1)=(b—1)(2b+1),implying0 < u < 2(b—1). This
value of u may exceed single-precision, and must be accommodated.

(i) (number of operations) The computationally intensive part of the algorithmis step 2.
The number of single-precision multiplicationsis about (2 + t) /2, discounting the
multiplication by 2. Thisis approximately one half of the single-precision multipli-
cations required by Algorithm 14.12 (cf. Note 14.15(ii)).

14.18 Note (sguaringvs. multiplicationingeneral) Squaringapositiveinteger z (i.e., computing
z2) can at best be no more than twice as fast as multiplying distinct integers « and y. To
seethis, consider theidentity zy = ((z +y)? — (x — y)?) /4. Hence, z - y can be computed
with two squarings (i.e., (x +y)? and (z — y)?). Of course, aspeed-up by afactor of 2 can
be significant in many applications.

14.19 Example (squaring) Table 14.4 shows the steps performed by Algorithm 14.16 in squar-

ing z = 989. Here, t = 3 and b = 10. O
|i i |w2i+$?|wz'+j+2$j$i+c| [ |v|| w5|w4|w3|w2|w1 |w0|
0 - 0+ 81 — 8 1 0 0 0 0 0 1

1 0+2-8-948 15 | 2 0 0 0 0 2 1

2 — 0+2-9-9+15 17 | 7 0 0 0 7 2 1

17| 7 0 0 17 7 2 1

1 - 7+ 64 - 7 1 0 0 17 1 2 1
2 — 174+2-9-847 16 | 8 0 0 8 1 2 1

16 | 8 0 16 8 1 2 1

2 - 16 4+ 81 - 9 7 0 7 8 1 2 1
9 7 9 7 8 1 2 1

Table 14.4: Multiple-precision squaring (see Example 14.19).
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598 Ch. 14 Efficient Implementation

14.2.5 Division

Division isthe most complicated and costly of the basic multiple-precision operations. Al-
gorithm 14.20 computes the quotient ¢ and remainder r in radix b representation when x is
divided by 3.

14.20 Algorithm Multiple-precision division

INPUT: positiveintegersz = (2, « - 2120)p, ¥ = (Yt + - - y1yo)p Withn > ¢ > 1,y # 0.
OUTPUT: the quotient ¢ = (gn—t - q14o0)» and remainder r = (r¢ - - - r179)p Such that
r=qy+nr,0<r<uy.
1. For j from0to (n — t) do: ¢;<0.
2. While (z > yb™~ ) dothefollowing: g, _t¢qn_¢ + 1, z¢x — yb™ L.
3. For i fromn downto (¢ + 1) do the following:
31 Ifx; =y thenset g;_;—14-b— 1; otherwiseset ¢, 1< | (x:b+ zi—1)/yt) |-
3.2 While (gi—t—1(yb + y1—1) > z;b* + zi—1b+ i—2) dO: gi—y—14-¢q;—¢—1 — L.
3.3z — qi_g_yb L
34 Ifx<Othenset x4+ yb' " tand gi_s_1+qi—s—1 — 1.
4. rez.
5. Return(q,r).

14.21 Example (multiple-precisiondivision)Letz = 721948327,y = 84461, sothatn = 8 and
t = 4. Table 14.5illustrates the steps in Algorithm 14.20. The last row gives the quotient

g = 8547 and the remainder r = 60160. O
i@ @ @ @ qlzs @ xs @5 x4 w3 TZ T T0 |

-1 0 0 0 0 0 7 2 1 9 4 8 3 2 7
81 0 9 0 0 0 7 2 1 9 4 8 3 2 7

8 0 0 0 4 6 2 6 0 3 2 7
7 8 5 0 0 4 0 2 9 8 2 7
6 8 5 5 0 4 0 2 9 8 2 7

8 5 4 0 6 5 1 3 8 7
5 8 5 4 8 6 5 1 3 8 7

8 5 4 7 6 0 1 6 0

Table 14.5: Multiple-precision division (see Example 14.21).

14.22 Note (commentson Algorithm 14.20)

(i) Step 2 of Algorithm 14.20is performed at most onceif y; > L%J and b iseven.
(i) Theconditionn >t > 1 canbereplaced by n > ¢ > 0, provided onetakes z; =
y; = 0 whenever asubscript j < 0 in encountered in the agorithm.

14.23 Note (normalization) The estimate for the quotient digit ¢;_;_; in step 3.1 of Algorithm
14.20 is never less than the true value of the quotient digit. Furthermore, if y; > L%j, then
step 3.2 is repeated no more than twice. If step 3.1 is modified so that q; ;1< | (z:6® +
Ti—1b + zi—2)/(y+b + yr—1)], then the estimate is almost always correct and step 3.2 is

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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14.24

14.25

14.3

14.26

never repeated more than once. One can always guarantee that y; > L%J by replacing the
integers x, y by Az, Ay for some suitable choice of A. The quotient of Az divided by Ay is
the same asthat of = by y; the remainder is A timesthe remainder of x divided by y. If the
base b isapower of 2 (asin many applications), then the choice of A should be apower of 2;
multiplication by ) is achieved by simply left-shifting the binary representations of = and
y. Multiplying by a suitable choice of \ to ensure that y; > L%J is called normalization.
Example 14.24 illustrates the procedure.

Example (normalized division) Take z = 73418 and y = 267. Normalize x and y by
multiplyingeach by A = 3: 2’ = 3z = 220254 andy’ = 3y = 801. Table 14.6 shows
the steps of Algorithm 14.20 as applied to z’ and 3y'. When 2’ is divided by 4/, the quotient
is 274, and the remainder is 780. When z is divided by y, the quotient is also 274 and the
remainder is 780/3 = 260. O

<.

las @@ oo qlas x4 w35 32 =
0 0 2 2
0

NN O
N 3O o

W B ot |

0
0
4

Table 14.6: Multiple-precision division after normalization (see Example 14.24).

Note (computational efficiency of Algorithm 14.20 with normalization)

(i) (multiplication count) Assuming that normalization extends the number of digitsin
x by 1, each iteration of step 3requires1 + (¢ + 2) = ¢ + 3 single-precision multi-
plications. Hence, Algorithm 14.20 with normalization requires about (n —t)(t + 3)
single-precision multiplications.

(i) (division count) Since step 3.1 of Algorithm 14.20 is executed n — ¢ times, at most
n — t single-precision divisions are required when normalization is used.

Multiple-precision modular arithmetic

§14.2 provided methods for carrying out the basic operations (addition, subtraction, multi-
plication, squaring, and division) with multiple-precision integers. This section deals with
these operations in Z,,,, the integers modulo m, where m is a multiple-precision positive
integer. (See §2.4.3 for definitions of Z,,, and related operations.)

Letm = (mpmn—_1---mimg), beapostiveinteger in radix b representation. Let
T = (TpTp_1--2120)p Ay = (YnYn—1- - Y1Y0)s be NON-negative integersin base b
representation such that + < m and y < m. Methods described in this section are for
computing  + y mod m (modular addition), z — y mod m (modular subtraction), and
x -y mod m (modular multiplication). Computing z~! mod m (modular inversion) is ad-
dressed in §14.4.3.

Definition If z isany integer, then z mod m (theinteger remainder in therange [0, m —1]
after z isdivided by m) is called the modular reduction of z with respect to modulus m.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



600 Ch. 14 Efficient Implementation
Modular addition and subtraction
Asis the case for ordinary multiple-precision operations, addition and subtraction are the
simplest to compute of the modular operations.
14.27 Fact Let z and y be non-negativeintegerswith z, y < m. Then:

(i) z+y<2m;
(i) ifz > y,then0 <z —y <m;and
@iy ifz <y, then0 <z +m—y < m.
If x,y € Z,,, then modular addition can be performed by using Algorithm 14.7 to add

x and y as multiple-precisionintegers, with the additional step of subtractingm if (and only
if) x +y > m. Modular subtraction is precisely Algorithm 14.9, provided x > .

14.3.1 Classical modular multiplication

14.28

Modular multiplication is more involved than multiple-precision multiplication (§14.2.3),
requiring both multiple-precision multiplication and some method for performing modular
reduction (Definition 14.26). The most straightforward method for performing modular re-
ductionis to compute the remainder on division by m, using a multiple-precision division
algorithm such as Algorithm 14.20; thisis commonly referred to asthe classical algorithm
for performing modular multiplication.

Algorithm Classical modular multiplication

INPUT: two positive integers z, y and amodulus m, all in radix b representation.
OUTPUT: z - y mod m.
1. Compute z - y (using Algorithm 14.12).
2. Compute the remainder » when z - y is divided by m (using Algorithm 14.20).
3. Return(r).

14.3.2 Montgomery reduction

Montgomery reduction is a technique which allows efficient implementation of modular
multiplication without explicitly carrying out the classical modular reduction step.

Let m beapositiveinteger, andlet R and " beintegerssuchthat R > m, gecd(m, R) =
1,and0 < T < mR. A method is described for computing TR ~! mod m without using
the classical method of Algorithm 14.28. TR~! mod m is called aMontgomery reduction
of T"modulo m with respect to R. With a suitable choice of R, a Montgomery reduction
can be efficiently computed.

Suppose z and y are integerssuchthat 0 < z,y < m. LetZ = zR mod m and
7 = yR mod m. The Montgomery reduction of z is ZyR ! mod m = zyR mod m.
This observation is used in Algorithm 14.94 to provide an efficient method for modular
exponentiation.

To briefly illustrate, consider computing z® mod m for someinteger 2,1 < z < m.
First compute 7 = xR mod m. Then compute the Montgomery reduction of zz, whichis
A = 72R~! mod m. TheMontgomery reductionof A2is A2R~! mod m = z*R~3 mod

m. Finaly, theMontgomery reductionof (42 R~! mod m)Zis(A?R~1)ZR~! mod m =
Z°R~*mod m = xR mod m. Multiplying this value by R—! mod m and reducing
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modulo m gives z® mod m. Provided that Montgomery reductions are more efficient to
compute than classical modular reductions, this method may be more efficient than com-
puting > mod m by repeated application of Algorithm 14.28.

If m isrepresented asabase b integer of length n, thenatypical choicefor Risb™. The
condition R > m isclearly satisfied, but gcd(R, m) = 1 will hold only if gcd(b,m) = 1.
Thus, this choice of R isnot possible for al moduli. For those moduli of practical interest
(such as RSA moduli), m will be odd; then b can be apower of 2 and R = b™ will suffice.

Fact 14.29 is basic to the Montgomery reduction method. Note 14.30 then impliesthat
R = b™ issufficient (but not necessary) for efficient implementation.

14.29 Fact (Montgomery reduction) Given integers m and R where gcd(m, R) = 1, let m’ =
—m~! mod R, and let T be any integer suchthat 0 < T' < mR. If U = Tm/ mod R,
then (T + Um)/Risaninteger and (T + Um)/R=TR~* (mod m).

Justification. T+ Um = T (mod m) and, hence, (T’ + Um)R~! = TR~ (mod m).
Toseethat (T + Um)R~!isaninteger, observethat U = Tm’ + kRandm'm = —1+IR
for someintegers k and [. It followsthat (7' + Um)/R = (T + (IT'm’ + kR)m)/R =
(T+T(-1+IR)+EkERm)/R=1T + km.

14.30 Note (implicationsof Fact 14.29)

(i) (T +Um)/Risanestimate for TR~! mod m. SinceT < mRandU < R, then
(T+Um)/R < (mR+mR)/R = 2m. Thuseither (T+Um)/R = TR~! mod m
or (T+Um)/R = (TR~ mod m)+m (i.e, theestimateiswithinm of theresidue).
Example 14.31 illustrates that both possibilities can occur.

(ii) If al integers are represented in radix b and R = b™, then TR~ mod m can be
computed with two multiple-precision multiplications (i.e., U =T - m’ and U - m)
and simple right-shiftsof 7'+ Um in order to divide by R.

14.31 Example (Montgomery reduction) Let m = 187, R = 190. Then R~! mod m = 125,
mlmod R = 63,andm’ = 127. If T = 563,thenU = Tm/ mod R = 61 and
(T +Um)/R =63 =TR 'modm. If T =1125then U = T'm’ mod R = 185 and
(T +Um)/R =188 = (TR~ mod m) + m. O

Algorithm 14.32 computes the Montgomery reduction of T' = (tg,,—1 - - - t1t0)s When
R =b"andm = (my_1---mimg)p. Theagorithm makes implicit use of Fact 14.29
by computing quantities which have similar propertiesto U = T'm’ mod Rand T + Um,
although the | atter two expressions are not computed explicitly.

14.32 Algorithm Montgomery reduction

INPUT: integersm = (my,—1 - - - mimg)p Withged(m, b) = 1, R = b, m' = —m~! mod
b, andT = (th—l .. 'tlto)b < mR.
OUTPUT: TR~! mod m.
1. A«T. (Notation: A= (agn_l s alao)b.)
2. Forifrom0to (n — 1) dothefollowing:
2.1 u;<a;m' mod b.
2.2 A—A+ uymb'.
3. A—A/b™.
4, If A > mthen A+~A —m.
5. Return(A).
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14.33 Note (commentson Montgomery reduction)

(i) Algorithm14.32doesnot requirem’ = —m ™! mod R, asFact 14.29 does, but rather
m’ = —m~! mod b. Thisis dueto the choice of R = b".

(ii) Atstep2.1of thealgorithmwithi = I, A hasthepropertythata; = 0,0 < j <1—1.
Step 2.2 does not modify these values, but does replace a; by 0. It follows that in
step 3, A isdivisible by b™.

(iii) Going into step 3, the value of A equals T plus some multiple of m (see step 2.2);
here A = (T + km)/b™ isan integer (see (i) above) and A = TR~ (mod m). It
remains to show that A islessthan 2m, so that at step 4, a subtraction (rather than a
division) will suffice. Goingintostep3, A = T+ 31 u;b'm. But 30— wbim <
b"m = Rmand T < Rm; hence, A < 2Rm. Going into step 4 (after division of A
by R), A < 2m asrequired.

14.34 Note (computational efficiency of Montgomery reduction) Step 2.1 and step 2.2 of Algo-
rithm 14.32 require atotal of n + 1 single-precision multiplications. Since these steps are
executed n times, the total number of single-precision multiplicationsis n(n + 1). Algo-
rithm 14.32 does not require any single-precision divisions.

14.35 Example (Montgomeryreduction)Letm = 72639,b = 10, R = 10°,and T = 7118368.
Heren =5,m' = —=m ! mod 10 = 1, T mod m = 72385,and TR~ mod m = 39796.

Table 14.7 displays the iterations of step 2 in Algorithm 14.32. O
| i || u; = a;m’ mod 10 | uymb’ | A |
_ — - 7118368
0 8 581112 7699480
1 8 5811120 13510600
2 6 43583400 57094000
3 4 290556000 347650000
4 5 3631950000 | 3979600000

Table 14.7: Montgomery reduction algorithm (see Example 14.35).

Montgomery multiplication

Algorithm 14.36 combines Montgomery reduction (Algorithm 14.32) and multiple-precis-
ion multiplication (Algorithm 14.12) to compute the Montgomery reduction of the product
of two integers.

14.36 Algorithm Montgomery multiplication

INPUT: integers m = (mp—1-+-m1mo)p, © = (Tn—1-2120)6s Y = (Yn—1"""Y1%0)b
with0 < z,y < m, R = b™ with ged(m,b) = 1,and m’ = —m~! mod b.
OUTPUT: zyR~! mod m.
1. A«0. (Notation: A = (anan—_1---a1a9)p.)
2. Forifrom0to (n — 1) dothefollowing:
2.1 u;<(ag + z;yo)m’ mod b.
22 A+—(A+ z;y + u;m)/b.
3. If A>mthen A—A — m.
4. Return(A).
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14.37

14.38

14.39

14.40

14.41

Note (partial justification of Algorithm 14.36) Suppose at the i** iteration of step 2 that
0 <A< 2m-—1. Step 2.2 replaces A with (A + z;y + u;m) /b; but (A+z;y +u;m) /b <
2m—-2+b-1)(m—-1)4+(b—-1)m)/b =2m —1—(1/b). Hence, A < 2m — 1,
justifying step 3.

Note (computational efficiency of Algorithm 14.36) Since A + z;y + u;m isamultiple of
b, only aright-shift isrequired to perform adivision by b in step 2.2. Step 2.1 requirestwo
single-precision multiplications and step 2.2 requires 2n. Since step 2 is executed n times,
the total number of single-precision multiplicationsisn(2 + 2n) = 2n(n + 1).

Note (computing zy mod m with Montgomery multiplication) Suppose z, y, and m are
n-digit base b integerswith 0 < z,y < m. Neglecting the cost of the precomputationin
theinput, Algorithm 14.36 computes zy R ~* mod m with 2n(n + 1) single-precision mul-
tiplications. Neglecting the cost to compute R mod m and applying Algorithm 14.36 to
ryR~! mod m and R? mod m, xy mod m iscomputed in 4n(n + 1) single-precision op-
erations. Using classical modular multiplication (Algorithm 14.28) would require2n(n+1)
single-precision operations and no precomputation. Hence, the classical algorithm is supe-
rior for doing asingle modular multiplication; however, Montgomery multiplicationisvery
effective for performing modular exponentiation (Algorithm 14.94).

Remark (Montgomeryreductionvs. Montgomery multiplication) Algorithm 14.36 (Mont-
gomery multiplication) takes as input two n-digit numbers and then proceedsto interleave
the multiplication and reduction steps. Because of this, Algorithm 14.36 is not ableto take
advantageof the special casewheretheinputintegersareequal (i.e., squaring). Ontheother
hand, Algorithm 14.32 (Montgomery reduction) assumes as input the product of two inte-
gers, each of which hasat most » digits. Since Algorithm 14.32 isindependent of multiple-
precision multiplication, afaster squaring algorithm such as Algorithm 14.16 may be used
prior to the reduction step.

Example (Montgomery multiplication) In Algorithm 14.36, let m = 72639, R = 10°,
x = 5792,y = 1229. Heren = 5,m' = —m ' mod 10 = 1, and zyR~! mod m =
39796. Noticethat m and R arethe samevaluesasin Example 14.35, asisxzy = 7118368.

Table 14.8 displays the steps in Algorithm 14.36. d
Lila oo [w] oy [ wm [ A |
0] 2 18 8 2458 | 581112 | 58357
119 81 8 | 11061 | 581112 | 65053
2|7 63 6 8603 | 435834 | 50949
3] 5 45 4 6145 | 290556 | 34765
410 0 5 0 363195 | 39796

Table 14.8: Montgomery multiplication (see Example 14.41).

14.3.3 Barrett reduction

Barrett reduction (Algorithm 14.42) computesr = x mod m givenx andm. Thealgorithm
requiresthe precomputation of thequantity . = |b2* /m ; itisadvantageousif many reduc-
tions are performed with a single modulus. For example, each RSA encryption for one en-
tity requires reduction modul o that entity’s public key modulus. The precomputation takes
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afixed amount of work, which is negligiblein comparison to modular exponentiation cost.
Typicaly, theradix b is chosen to be close to the word-size of the processor. Hence, assume
b > 3 in Algorithm 14.42 (see Note 14.44 (ii)).

14.42 Algorithm Barrett modular reduction

INPUT: positiveintegersz = (zak—1 -+ - 120)p, m = (Mg—1 - mamo)p (Withmg_1 #
0), and o = |b%*/m].
OUTPUT: r = 2 mod m.

1 qie|z/bF 1, goe—qi -y, 3| g2/ .

2. ri<x mod b1, ro<—gs - m mod b, re—ry — 1.

3. If r < 0 thenr<r + bF+1,

4. Whiler > m do: r<r — m.

5. Return(r).

14.43 Fact By the division agorithm (Definition 2.82), there exist integers ¢ and R such that
r=0@Qm+ Rand0 < R < m. Instep 1 of Algorithm 14.42, the following inequality is
satisfied: Q@ —2 < g3 < Q.

14.44 Note (partial justification of correctness of Barrett reduction)

(i) Algorithm 14.42 is based on the observation that |z/m| can be written as Q =
| (z/bE=1)(b%* /m)(1/b%+1)]. Moreover, Q can be approximated by the quantity
gs = | lz/bF | pu/bF 1|, Fact 14.43 guaranteesthat gs is never larger than thetrue
quetient (), and is at most 2 smaller.

(i) Instep 2, observe that —b**! < ry —ry < W*FL ) — 1y = (Q — g3)m + R
(mod b*+1), and 0 < (Q — g3)m + R < 3m < b**1 sincem < b¥ and 3 < b. If
ry—re > 0,thenry —ry = (Q —g3)m+ R. If ry —rg < 0, thenry — g+ bFtL =
(Q — g3)m + R. Ineither case, step 4 is repeated at most twicesince 0 < r < 3m.

14.45 Note (computational efficiency of Barrett reduction)
(i) All divisions performed in Algorithm 14.42 are simple right-shifts of the base b rep-
resentation.

(i) g2 isonly used to compute ¢3. Sincethe k + 1 least significant digits of ¢» are not
needed to determine g3, only a partial multiple-precision multiplication (i.e., q1 - i)
is necessary. The only influence of the k& + 1 least significant digits on the higher
order digitsis the carry from position k& + 1 to position k£ + 2. Provided the base b
is sufficiently large with respect to &, this carry can be accurately computed by only
calculatingthedigitsat positionsk and k+1. ! Hence, thek—1 least significant digits
of g2 need not be computed. Since 1 and ¢; haveat most &+ 1 digits, determining g3
requiresat most (k + 1)2 — (%) = (k% + 5k + 2) /2 single-precision multiplications.

(iii) Instep 2 of Algorithm 14.42, ro can also be computed by apartial multiple-precision
multiplication which evaluates only the least significant k& + 1 digitsof g3 - m. This
can be donein at most (’“2“) + k single-precision multiplications.

14.46 Example (Barrett reduction) Letb = 4, k = 3, z = (313221),, and m = (233), (i.e,
z = 3561 and m = 47). Thenp = |4%/m| = 87 = (1113)y, 1 = [(313221),/42| =
(3132)5, g2 = (3132), - (1113), = (10231302)5, g3 = (1023)p, 11 = (3221)p, ry =
(1023) - (233), mod b* = (3011)p, andr = 1 — r2 = (210)p. Thusz mod m = 36. [J

LIf b > k, then the carry computed by simply considering the digits at position k£ — 1 (and ignoring the carry
from position k£ — 2) will bein error by at most 1.
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14.3.4 Reduction methods for moduli of special form

14.47

14.48

14.49

14.50

When the modulus has aspecial (customized) form, reduction techniques can be employed
to allow moreefficient computation. Supposethat the modulusm isat-digit baseb positive
integer of the form m = b* — ¢, where c is an [-digit base b positive integer (for some
[ < t). Algorithm 14.47 computesz mod m for any positiveinteger by using only shifts,
additions, and single-precision multiplications of base b numbers.

Algorithm Reduction modulo m = b* — ¢

INPUT: abase b, positive integer =, and amodulusm = b¢ — ¢, where c is an [-digit base
b integer for somel < t.
OUTPUT: r = x mod m.
1. go<|z/bt], ro<z — qobt, r<ro, i<0.
2. While g; > 0 do the following:
2.1 qi+1<—Lqic/btj, Ti+15q;C — qi+1bt.
22 i+i+ 1, r<r+r;.
3. Whiler > m do: r<r — m.
4. Return(r).

Example (reductionmodulob® —c) Letb =4, m = 935 = (32213)4, and z = 31085 =
(13211231)4. Sincem = 4% — (1121),, take ¢ = (1121),. Heret = 5andl = 4.
Table 14.9 displays the quotients and remainders produced by Algorithm 14.47. At the be-
ginning of step 3, » = (102031)4. Sincer > m, step 3computesr — m = (3212),. O

il gae [ @ | n | r |
- (132), | (11231), | (11231),
(221232)4 | (2)a | (21232)s | (33123)4

(2302), (0)2 | (2302)s | (102031)4

o = O .

Table 14.9: Reduction modulo m = b* — ¢ (see Example 14.48).

Fact (termination) For someinteger s > 0, ¢s = 0; hence, Algorithm 14.47 terminates.

Justification. g;c = g; 116 +7i11,4 > 0. Sincec < bt, ¢; = (qi11b'/¢)+(riv1/¢) > qit1-
Sincethe ¢;’sare non-negativeintegers which strictly decrease as: increases, thereis some
integer s > 0 such that ¢, = 0.

Fact (correctness) Algorithm 14.47 terminates with the correct residue modulo m.

Justification. Suppose that s isthe smallest index ¢ for which ¢; = 0 (i.e., ¢ = 0). Now,
x = qob® + ro and g;c = q;11b* + 11, 0 < i < s — 1. Adding these equations gives
v+ (Limga) e = (S50 @) b + Sl Sinced® = ¢ (mod m), it follows that

z =Y. _,m (mod m). Hence, repeated subtraction of m fromr = >°7_ r; givesthe
correct residue.
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14.51 Note (computational efficiency of reduction modulo bt — ¢)

(i) Supposethat x has 2t base b digits. If I < t/2, then Algorithm 14.47 executes step 2
a most s = 3 times, requiring 2 multiplications by c. In generadl, if [ is approxi-
mately (s — 2)t/(s — 1), then Algorithm 14.47 executes step 2 about s times. Thus,
Algorithm 14.47 requires about s/ single-precision multiplications.

(i) If ¢ has few non-zero digits, then multiplication by ¢ will be relatively inexpensive.
If ¢ islarge but has few non-zero digits, the number of iterations of Algorithm 14.47
will be greater, but each iteration requires a very simple multiplication.

14.52 Note (modifications) Algorithm 14.47 can be modified if m = b + ¢ for some positive
integer ¢ < bt: instep 2.2, replace r<—r + r; With r<—r + (—1)ir;.

14.53 Remark (using moduli of a special form) Selecting RSA moduli of the form b* + ¢ for
small values of ¢ limits the choices of primes p and ¢q. Care must also be exercised when
selecting moduli of aspecial form, so that factoring is not made substantially easier; thisis
because numbers of this form are more susceptible to factoring by the special number field
sieve (see §3.2.7). A similar statement can be made regarding the selection of primes of a
specia form for cryptographic schemes based on the discrete logarithm problem.

14.4 Greatest common divisor algorithms

Many situations in cryptography require the computation of the greatest common divisor
(gcd) of two positiveintegers (see Definition 2.86). Algorithm 2.104 describestheclassical
Euclidean algorithmfor thiscomputation. For multiple-precisionintegers, Algorithm2.104
requiresamultiple-precision division at step 1.1 which is arelatively expensive operation.
This section describes three methods for computing the ged which are more efficient than
the classical approach using multiple-precision numbers. The first is non-Euclidean and
is referred to as the binary ged algorithm (§14.4.1). Although it requires more steps than
the classical algorithm, the binary gcd algorithm eliminates the computationally expen-
sive division and replaces it with elementary shifts and additions. Lehmer’s gcd algorithm
(§14.4.2) isavariant of the classical algorithm more suited to multiple-precision computa
tions. A binary version of the extended Euclidean algorithmis givenin §14.4.3.

14.4.1 Binary gcd algorithm

14.54 Algorithm Binary gcd algorithm

INPUT: two positiveintegers z and y with x > y.
OUTPUT: ged(z, y).
1. g«1.
2. While both = and y are even do the fallowing: z<z/2, y«y/2, g+2g.
3. While z # 0 do the following:
3.1 Whilez isevendo: z<—x/2.
3.2 Whiley isevendo: y«+y/2.
3.3 te|z —y|/2.
3.4 If z > y then z<t; otherwise, y«t.

4. Return(g - y).
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14.55 Example (binary gcd algorithm) Thefollowing table displaysthe steps performed by Al-
gorithm 14.54 for computing gcd(1764, 868) = 28. O

x || 1764 | 441 | 112 7 7 7 71710
Y 868 | 217 | 217 | 217 | 105 | 49 | 21
g 1 4 4 4 4 4 4144

-3
N

14.56 Note (computational efficiency of Algorithm 14.54)
(i) If z andy areinradix 2 representation, thenthedivisionsby 2 are simply right-shifts.
(i) Step 3.3 for multiple-precision integers can be computed using Algorithm 14.9.

14.4.2 Lehmer’s gcd algorithm

Algorithm 14.57 is a variant of the classical Euclidean algorithm (Algorithm 2.104) and
is suited to computations involving multiple-precision integers. It replaces many of the
multiple-precision divisions by simpler single-precision operations.

Let 2 and y be positive integers in radix b representation, with z > y. Without loss
of generality, assumethat 2 and y have the same number of base b digits throughout Algo-
rithm 14.57; this may necessitate padding the high-order digits of y with 0’s.

14.57 Algorithm Lehmer’s gcd algorithm

INPUT: two positive integers x and y in radix b representation, with = > y.
OUTPUT: ged(z, y).

1. Whiley > b do thefollowing:

1.1 Set z, y to bethe high-order digit of z, y, respectively (y could be 0).
1.2 A<1, B0, C«0, D«1.
1.3 While (y + C) # 0 and (y + D) # 0 do the following:
¢|@+A)/F+C)], ¢+|@+B)/G+D)].
If ¢ # ¢’ thengoto step 1.4.
t«A — qC, AC, C«t, t«B —qD, B+D, D<«t.
t—T — qy, Ty, y+t.
14 If B=0,thenT<+=x mod y, z<vy, y<T;
otherwise, T+ Ax + By, u<Cx + Dy, x<T, y<u.
2. Compute v = ged(z, y) using Algorithm 2.104.
3. Return(v).

14.58 Note (implementation notes for Algorithm 14.57)
(i) T is amultiple-precision variable. A, B, C, D, and t are signed single-precision

variables; hence, one hit of each of these variables must be reserved for the sign.

(ii) Thefirst operation of step 1.3 may result in overflow since0 <z + A,y + D < b.
This possibility needs to be accommodated. One solution isto reserve two bits more
than the number of bitsin adigit for each of z and 3 to accommodate both the sign
and the possible overflow.

(ili) The multiple-precision additions of step 1.4 are actually subtractions, since AB < 0
andCD <0.
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14.59 Note (computational efficiency of Algorithm 14.57)
(i) Step 1.3 attempts to simulate multiple-precision divisions by much simpler single-

precision operations. In each iteration of step 1.3, all computations are single preci-
sion. The number of iterations of step 1.3 depends on b.

(i) The modular reduction in step 1.4 is a multiple-precision operation. The other op-

erations are multiple-precision, but require only linear time since the multipliers are
single precision.

14.60 Example (Lehmer'sgcdalgorithm)Letb = 103, z = 768 454923, andy = 542 167 814.
Since b = 103, the high-order digitsof z and y are 7 = 768 and j = 542, respectively.
Table 14.10 displays the values of the variables at various stages of Algorithm 14.57. The
single-precision computations (Step 1.3) when ¢ = ¢’ are shown in Table 14.11. Hence
ged(z,y) = 1. O

14.4.3 Binary extended gcd algorithm

Givenintegersz and i, Algorithm 2.107 computesintegersa and b such that ax + by = v,
wherev = ged(z, y). It has the drawback of requiring relatively costly multiple-precision
divisions when z and y are multiple-precision integers. Algorithm 14.61 eliminates this
requirement at the expense of moreiterations.

14.61 Algorithm Binary extended gcd algorithm

INPUT: two positive integers z and y.
OUTPUT: integersa, b, and v such that ax + by = v, wherev = ged(z, y).

1.

g+1.

2. While z and y are both even, do the following: z<x/2, y+y/2, g<2g.
3.
4. While u is even do the following:

ux, vy, A1, B0, C+0, D«+1.

4.1 u+u/2.
42 If A= B =0 (mod 2) then A«~—A/2, B« B/2; otherwise, A« (A +y)/2,
B«+(B —x)/2.
While v is even do the following:
5.1 v+wv/2.
52 If C = D =0 (mod 2) then C«+C/2, D+ D/2; otherwise, C+(C +y)/2,
D+(D —x)/2.

Ifu>vthenu¢<u —v, A«—~A—-C,B+B — D;
otherwise, v<v —u, C+C — A, D+ D — B.
If u =0, thena<«C, b« D, andreturn(a, b, g - v); otherwise, go to step 4.

14.62 Example (binary extended gcd algorithm) Let x = 693 and y = 609. Table 14.12 dis-
playsthe stepsin Algorithm 14.61 for computingintegersa, b, v such that 693a+609b = v,
wherev = ged (693, 609). Theagorithmreturnsv = 21, a = —181, and b = 206. O
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609

| z | y | q | ¢ | precision | reference
768454923 | 542167814 | 1 | 1 single Table 14.11(i)
8959359 | 47099917 | 1 | 1 single Table 14.11(ii)
42 493 679 4606238 | 10| 8 | multiple
4 606 238 1037537 | 5| 2| multiple
1037537 456090 | — | — | multiple
456 090 125357 | 3| 3 single Table 14.11(iii)
34681 10657 | 3 | 3 single Table 14.11(iv)
10 657 2710 | 5 | 3 | multiple
2710 2527 | 1 | O | multiple
2527 183 Algorithm 2.104
183 148 Algorithm 2.104
148 35 Algorithm 2.104
35 8 Algorithm 2.104
8 3 Algorithm 2.104
3 2 Algorithm 2.104
2 1 Algorithm 2.104
1 0 Algorithm 2.104

Table 14.10: Lehmer’s gcd algorithm (see Example 14.60).

~|

| z] y| A[ B[ C][ D] ¢ g4
() [ 768 542 1] 0] o] 1] 1 1
542 | 226 | 0| 1] 1| -1 2 2

226 90| 1] -1]-2] 3| 2 2

90| 46 | —2| 3| 5| -7| 1 2

()| 89| 47| 1] o| o 1| 1 1
47| 42 o] 1| 1|-1| 1 1

42 5 1| -1|-1| 2|10 5

(i) [456 [125 | 1] o] o] 1] 3 3
125 | 81| of 1| 1|-3| 1 1

81| 44| 1| -=3|-1| 4| 1 1

44 | 37| =1 | 4| 2|-7| 1 1

37| 7] 2| -7|-=3|11] 9 1

(ivw| 34| 10] 1] o| o] 1| 3 3
10 4| of 1| 1]|-3| 2 1

Table 14.11: Sngle-precision computations (see Example 14.60 and Table 14.10).
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14.63

14.64

14.65

14.5

[ u] v| A] B] C] D]
693 | 609 1 0 0 1
84 | 609 1 -1 0 1
42 | 609 | 305 | —347 0 1
21 | 609 | 457 | —520 0 1
21 | 588 | 457 | —520 | —457 521
21 | 294 | 457 | =520 76 —86
21 | 147 | 457 | =520 38 —43
21 | 126 | 457 | —520 | —419 477
21 63 | 457 | —520 95 | —108
21 42 | 457 | =520 | —362 412
21 21 | 457 | =520 | —181 206
0 21 | 638 | —726 | —181 206

Table 14.12: The binary extended gcd algorithm with x = 693, y = 609 (see Example 14.62).

Note (computational efficiency of Algorithm 14.61)

(i) The only multiple-precision operations needed for Algorithm 14.61 are addition and
subtraction. Division by 2 is simply aright-shift of the binary representation.

(i) The number of bits needed to represent either w or v decreasesby (at least) 1, after at
most two iterations of steps4—7; thus, thealgorithmtakesat most 2(|1g = |+ |lg y | +
2) such iterations.

Note (multiplicative inverses) Given positive integers m and a, it is often necessary to
find an integer z € Z,, suchthat az = 1 (mod m), if such an integer exists. z iscalled
the multiplicative inverse of a modulo m (see Definition 2.115). For example, construct-
ing the private key for RSA requires the computation of an integer d such that ed = 1

(mod (p — 1)(¢ — 1)) (see Algorithm 8.1). Algorithm 14.61 provides a computation-
ally efficient method for determining z given a and m, by settingz = mandy = a. If
ged(z,y) = 1, then, a termination, z = Dif D > 0,0rz = m + Dif D < 0; if
ged(z,y) # 1, then a is not invertible modulo m. Notice that if m is odd, it is not nec-
essary to compute the values of A and C'. 1t would appear that step 4 of Algorithm 14.61
requiresboth A and B in order to decidewhich casein step 4.2 isexecuted. But if m isodd
and B is even, then A must be even; hence, the decision can be made using the parities of
B andm.

Example 14.65 illustrates Algorithm 14.61 for computing a multiplicative inverse.

Example (multiplicativeinverse) Let m = 383 and a = 271. Table 14.13illustrates the
steps of Algorithm 14.61 for computing 271! mod 383 = 106. Noticethat valuesfor the
variables A and C' need not be computed. O

Chinese remainder theorem for integers

Fact 2.120 introduced the Chinese remainder theorem (CRT) and Fact 2.121 outlined an al -
gorithm for solving the associated system of linear congruences. Although the method de-
scribed there is the one found in most textbooks on elementary number theory, it is not the
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iteration: 1 2 3 4 5 6 7 8 9 10
u 383 112 56 28 14 7 7 7 7 7
v 271 271 271 | 271 | 271 271 264 132 66 33
B 0 —1 | —192 | —96 | —48 —24 —24 —24 —24 —24
D 1 1 1 1 1 1 25 | —179 | —281 | —332
iteration: 11 12 13 14 15 16 17 18 19
u 7 7 7 7 4 2 1 1 1
v 26 13 6 3 3 3 3 2 1
B —24 —24 —24 | —24 41 | =171 | =277 | =277 | =277
D —308 | —154 | —130 | —65 | —65 | —65 —65 212 106

Table 14.13: Inverse computation using the binary extended gcd algorithm (see Example 14.65).

method of choice for large integers. Garner’s algorithm (Algorithm 14.71) has some com-
putational advantages. §14.5.1 describes an alternate (non-radix) representation for non-
negativeintegers, called amodular representation, that allows some computational advan-
tages compared to standard radix representations. Algorithm 14.71 provides a technique
for converting numbers from modular to base b representation.

14.5.1 Residue number systems

14.66

14.67

14.68

14.69

14.70

In previous sections, non-negative integers have been represented in radix b notation. An
alternate meansis to use a mixed-radix representation.

Fact Let B beafixed positiveinteger. Let mq, ms, ... , m; be positiveintegers such that
ged(mg,m;) = 1forali # j,and M = [[;_, m; > B. Theneachinteger z,0 < z < B,
can be uniquely represented by the sequence of integers v(z) = (v1,va,... ,v:), Where
v; =z modm;,1<i<t.

Definition Referring to Fact 14.66, v(x) is called the modular representation or mixed-
radix representation of  for the moduli m, ma, ... ,m;. The set of modular representa
tionsfor al integersxz intherange 0 < x < B iscalled aresidue number system.

Ifv(z) = (v1,v2,...,v) andv(y) = (ug,uz,... ,u), definev(z)+v(y) = (w1, wa,
.,wy) wherew; = v; + u; mod my;, and v(x) - v(y) = (21,22,...,2:) Wherez; =
v; - u; mod my.

Fact If 0 < z,y < M, thenv((z +y) mod M) = v(x) +v(y) andv((x - y) mod M) =
v(z) - v(y)-

Example (modular representation) Let M = 30 =2x3 x5; here,t =3, m1 =2, m; =
3, and mg = 5. Table 14.14 displays each residue modulo 30 along with its associated
modular representation. As an example of Fact 14.68, notethat 21 4+ 27 = 18 (mod 30)
and (101) + (102) = (003). Also 22 - 17 = 14 (mod 30) and (012) - (122) = (024). O

Note (computational efficiency of modular representation for RSA decryption) Suppose
that n = pq, where p and ¢ are distinct primes. Fact 14.68 implies that ¢ mod n can be
computed in a modular representation as v¥(z); that is, if v(z) = (v1,v2) with respect to
moduli m; = p, ma = q, thenv¢(z) = (v{ mod p,v$ mod ¢q). In general, computing
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0] (000) [ 6 | (001) || 12 | (002) || 18 | (003) || 24 | (004)
1] @) || 7 | (12) || 13 | 113) || 19 | (114) || 25 | (110)
2| (022) || 8 | (023) || 14 | (024) || 20 | (020) || 26 | (021)
3 (103) || 9 | (104) || 15 | (100) || 21 | (101) || 27 | (102)
4| (014) || 10 | (010) || 16 | (011) || 22 | (012) || 28 | (013)
51 (120) || 11 | (121) || 17 | (122) || 23 | (123) || 29 | (124)

Table 14.14: Modular representations (see Example 14.69).

v¢ mod p and v$ mod ¢ is faster than computing ¢ mod n. For RSA, if p and ¢ are part
of the private key, modular representation can be used to improve the performance of both
decryption and signature generation (see Note 14.75).

Converting aninteger = from abase b representation to amodul ar representationis eas-
ily done by applying amodular reduction algorithmto computev; = x mod m;, 1 < i < ¢.
Modular representations of integersin Z,, may facilitate some computational efficiencies,
provided conversionfromastandard radix to modul ar representation and back arerelatively
efficient operations. Algorithm 14.71 describes one way of converting from modular rep-
resentation back to a standard radix representation.

14.5.2 Garner’s algorithm

Garner's algorithm is an efficient method for determining z, 0 < x < M, givenv(z) =
(v1,v2,...,v:), theresidues of  modulo the pairwise co-prime moduli mq, ma, ... , mq.

14.71 Algorithm Garner’s algorithm for CRT

INPUT: apositive integer M = [[;_, m; > 1, with gcd(m;, m;) = Lforali # j,anda
modular representation v(x) = (v1,va, ... ,v:) of = for them,.
OUTPUT: the integer z in radix b representation.
1. For i from 2 to ¢ do the following:
11 C;«1.
1.2 For j from1to (: — 1) do thefollowing:
us—m; " mod m; (use Algorithm 14.61).
Ci<—u - C; mod m;.
2. usv1, TU.
3. For i from 2 to ¢ do the following: u<(v; — x)C; mod m;, <z + u - H;;ll mj.
4. Return(z).

14.72 Fact z returned by Algorithm 14.71 satisfies0 < < M,z = v; (mod m;),1 <i < t.

14.73 Example (Garner'salgorithm) Let my = 5, mg = 7, mg = 11, my = 13, M =
Hle m,; = 5005, and v(z) = (2,1,3,8). The constants C; computed are C» = 3,
C3 = 6,and Cy = 5. Thevaluesof (i, u,z) computed in step 3 of Algorithm 14.71 are
(1,2,2),(2,4,22),(3,7,267),and (4, 5,2192). Hence, the modular representationv(z) =
(2,1,3,8) correspondsto the integer x = 2192. O
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14.74 Note (computational efficiency of Algorithm 14.71)

(i) If Garner’salgorithmis used repeatedly with the same modulus M and the same fac-
tors of M, then step 1 can be considered as a precomputation, requiring the storage
of t — 1 numbers.

(i) Theclassical algorithm for the CRT (Algorithm 2.121) typically requires a modular
reduction with modulus M, whereas Algorithm 14.71 does not. Suppose M isakt-
bit integer and each m; isak-bit integer. A modular reduction by M takes O((kt)?)
bit operations, whereas amodular reduction by m; takes O(k?) bit operations. Since
Algorithm 14.71 only does modular reduction with m;, 2 < i < t, it takes O(tk?)
bit operationsin total for the reduction phase, and is thus more efficient.

14.75 Note (RSA decryption and signature generation)

(i) (special caseof two moduli) Algorithm 14.71 s particularly efficient for RSA moduli
n = pq, wherem; = p and ms = ¢ aredistinct primes. Step 1 computesa single
vaue C, = p~! mod q. Step 3 is executed once: u = (v2 — v1)Cs mod ¢ and
Tr = v1 + up.

(i) (RSA exponentiation) Supposep and q aret-bit primes, andlet n = pq. Let d bea2t-
bit RSA private key. RSA decryption and signature generation compute ¢ mod n
for some x € Z,. Suppose that modular multiplication and squaring require k2 bit
operations for k-bit inputs, and that exponentiation with a k-bit exponent requires
about %k multiplications and squarings (see Note 14.78). Then computingz¢ mod n
requiresabout %(215)3 = 12¢3 bit operations. A moreefficient approachisto compute
z% mod p and z% mod ¢ (Whered, = d mod (p — 1) and d, = d mod (g — 1)),
and then use Garner’s algorithm to construct z¢ mod pq. Although this procedure
takes two exponentiations, each is considerably more efficient because the moduli
are smaller. Assuming that the cost of Algorithm 14.71 is negligible with respect to
the exponentiations, computing % mod n isabout £ (2¢)3/2(3t%) = 4 times faster.

14.6 Exponentiation

One of the most important arithmetic operations for public-key cryptography is exponen-
tiation. The RSA scheme (§8.2) requires exponentiation in Z,,, for some positive integer
m, whereas Diffie-Hellman key agreement (§12.6.1) and the EIGamal encryption scheme
(§8.4) use exponentiationin Z,, for some large prime p. As pointed out in §8.4.2, ElGamal
encryption can be generalized to any finite cyclic group. This section discusses methodsfor
computing the exponential g¢, where the base g is an element of afinite group G (§2.5.1)
and the exponent ¢ is a non-negative integer. A reader uncomfortable with the setting of a
general group may consider G tobeZ; ; that is, read g¢ as g¢ mod m.

An efficient method for multiplying two elements in the group G is essential to per-
forming efficient exponentiation. The most naive way to compute g¢ isto do e — 1 multi-
plicationsinthegroup G. For cryptographicapplications, the order of the group G typically
exceeds 2160 elements, and may exceed 21024, Most choices of e are large enough that it
would be infeasible to compute ¢g¢ using e — 1 successive multiplications by g.

There are two ways to reduce the time required to do exponentiation. One way isto
decrease the time to multiply two elements in the group; the other is to reduce the number
of multiplications used to compute g¢. Ideally, one would do both.

This section considers three types of exponentiation algorithms.
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1. basic techniques for exponentiation. Arbitrary choices of the base g and exponent e
are alowed.

2. fixed-exponent exponentiationalgorithms. Theexponent e isfixed and arbitrary choi-
ces of the base g are allowed. RSA encryption and decryption schemes benefit from
such agorithms.

3. fixed-base exponentiation algorithms. The base g is fixed and arbitrary choices of
the exponent e are allowed. ElGamal encryption and signatures schemes and Diffie-
Hellman key agreement protocols benefit from such algorithms.

14.6.1 Techniques for general exponentiation

14.76

14.77

14.78

This section includes general -purpose exponentiation algorithms referred to as repeated
sgquare-and-multiply algorithms.

(i) Basic binary and k-ary exponentiation

Algorithm 14.76 is simply Algorithm 2.143 restated in terms of an arbitrary finite abelian
group G with identity element 1.

Algorithm Right-to-left binary exponentiation

INPUT: an element g € G and integer e > 1.
OUTPUT: g°.
1. A«1, S«g.
2. While e # 0 do the following:
2.1 If eisoddthen A+ A - S.
2.2 e«|e/2].
23 Ife #0then S-S - S.
3. Return(A).

Example (right-to-left binary exponentiation) The following table displays the values of
A, e, and S during each iteration of Algorithm 14.76 for computing g 2%3. O

A 1 g g3 g3 gll 927 927 927 927 9283

e | 283 141 70 35 17 8 4 2 1 0

S g g2 g4 g8 916 932 964 9128 9256 _

Note (computational efficiency of Algorithm 14.76) Let ¢t 4+ 1 be the bitlength of the bi-
nary representation of e, and let wt(e) be the number of 1’sin this representation. Algo-
rithm 14.76 performs ¢ squarings and wt(e) — 1 multiplications. If e is randomly selected
intherange 0 < e < |G| = n, then about |lgn| squaringsand 1 (|lgn| + 1) multiplica-
tions can be expected. (The assignment 1 - z is not counted as a multiplication, nor is the
operation 1 - 1 counted as a squaring.) If squaring is approximately as costly as an arbi-
trary multiplication (cf. Note 14.18), then the expected amount of work is roughly % llgn]
multiplications.

Algorithm 14.76 computes A - S whenever e is odd. For some choicesof g, A - g can
be computed more efficiently than A - S for arbitrary S. Algorithm 14.79 is a left-to-right
binary exponentiation which replaces the operation A - S (for arbitrary .S) by the operation
A - g (for fixed g).
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14.79

14.80

14.81

14.82

Algorithm Left-to-right binary exponentiation

INPUT: g € G and apositiveinteger e = (eter—1 -+ - €1€0)2.

OUTPUT: ¢.
1. A«1.
2. For i from ¢ down to 0 do the following:
21 A+A- A
22 Ife; =1,then A«~A-g.
3. Return(A).

Example (left-to-right binary exponentiation) The following table displays the values of
A during each iteration of Algorithm 14.79 for computing ¢23. Notethat t = 8 and 283 =
(100011011)s. O

1|8 T 6 5 4 3 2 1 0
e |1 0 0 0 1 1 0 1 1

A g gQ g4 gS gl7 935 g70 9141 9283

Note (computational efficiency of Algorithm 14.79) Let ¢ + 1 be the bitlength of the bi-
nary representation of e, and let wt(e) be the number of 1’sin this representation. Algo-
rithm 14.79 performs¢ + 1 squarings and wt(e) — 1 multiplications by g. The number of
squarings and multiplicationsisthe same asin Algorithm 14.76 but, in this algorithm, mul-
tiplication is aways with the fixed value g. If g has a special structure, this multiplication
may be substantially easier than multiplying two arbitrary elements. For example, a fre-
quent operation in EIGamal public-key schemesis the computation of ¢* mod p, where g
isagenerator of Z,, and p isalarge prime number. The multiple-precisioncomputation A-g
can be donein linear timeif ¢ is chosen so that it can be represented by a single-precision
integer (e.g., g = 2). If theradix b is sufficiently large, thereis ahigh probability that such
agenerator exists.

Algorithm 14.82, sometimes referred to as the window method for exponentiation, isa
generalization of Algorithm 14.79 which processes more than one hit of the exponent per
iteration.

Algorithm Left-to-right k-ary exponentiation

INPUT: gand e = (eses_1 - - - e1e0)p, Whereb = 2% for some k > 1.
OUTPUT: ¢°.

1. Precomputation.
1.1 go<+1.
1.2 Forifrom1to (2% — 1) do: g;+g;_1 - g. (Thus, g; = ¢*.)
2. A«1.
3. For i from ¢ down to 0 do the following:
31 A—A?",
32 A<A-g.,.
4. Return(A).
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In Algorithm 14.83, Algorithm 14.82 is modified slightly to reduce the amount of pre-
computation. The following notation isused: for each i, 0 < ¢ < ¢, if e; # 0, then write

e; = 2Miu,; wherew; isodd; if e; = 0, thenlet h; = 0 and u; = 0.

14.83 Algorithm Modified left-to-right k-ary exponentiation
INPUT: gand e = (ete_1 - - - e1e0)p, Whereb = 2% for some k > 1.

OUTPUT: g°.
1. Precomputation.
11 go+1, g14-g, g2g°.
1.2 Forifrom1to (28=1 — 1) do: goi114-g2i_1 - ga-
2. A+1.
3. Forifrom¢ downto 0 do: A« (A2 " . g,.)%".
4. Return(A).

14.84 Remark (right-to-left k-ary exponentiation) Algorithm 14.82 is a generalization of Algo-
rithm 14.79. In a similar manner, Algorithm 14.76 can be generalized to the k-ary case.
However, the optimization given in Algorithm 14.83 is not possible for the generalized
right-to-left k-ary exponentiation method.

(i) Sliding-window exponentiation

Algorithm 14.85 al so reduces the amount of precomputation compared to Algorithm 14.82
and, moreover, reducesthe average number of multiplications performed (excluding squar-
ings). k is called the window size.

14.85 Algorithm Sliding-window exponentiation
INPUT: g, e = (erer—1 - -~ e1€9)2 Withe, = 1, and aninteger & > 1.

OUTPUT: g°.
1. Precomputation.
11 gi¢g, gas—g°.
1.2 Forifrom1to (28=1 — 1) do: go;114-g2i_1 - ga-
2. A1, i«t.
3. While i > 0 do the following:
3.1 Ife; = 0 thendo: A+ A2, 4+ — 1.
3.2 Otherwise(e; # 0), findthelongest bitstringe;e; 1 - - - e; suchthat i —1+1 < k
and e; = 1, and do the following;:
A AT g e il 1
4. Return(A).
14.86 Example (dliding-window exponentiation) Tekee = 11749 = (10110111100101)- and

k = 3. Table 14.15illustrates the steps of Algorithm 14.85. Notice that the sliding-window
method for this exponent requires three multiplications, correspondingto: = 7, 4, and 0.
Algorithm 14.79 would have reguired four multiplicationsfor the samevaluesof £ and e. (J
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| i | A Longest bitstring
13 1 101
10 g° 101
Tl (@) =g" 111
4 (945)897 _ 9367 _
3 (9367)2 — g734 _
2 (9734)2 — 91468 101
0 (91468)895 — 911749 _

Table 14.15: Siding-window exponentiation with £ = 3 and exponent e = (10110111100101)z.

14.87 Note (comparison of exponentiation algorithms) Let ¢ + 1 be the bitlength of ¢, and let
[ + 1 be the number of k-bit words formed frome; thatis, i = [(t +1)/k] — 1 = |t/k].
Table 14.16 summarizes the number of squarings and multiplications required by Algo-
rithms 14.76, 14.79, 14.82, and 14.83. Analysis of the number of squarings and multipli-
cations for Algorithm 14.85 is more difficult, although it is the recommended method.

(i) (sguaringsfor Algorithm 14.82) The number of squaringsfor Algorithm 14.82is (k.
Observethat Ik = |t/k|k =t — (t mod k). It followsthatt — (k — 1) < lk <t
and that Algorithm 14.82 can save up to k& — 1 squarings over Algorithms 14.76 and
14.79. An optimal valuefor k in Algorithm 14.82 will depend on ¢.

(i) (squaringsfor Algorithm 14.83) The number of squaringsfor Algorithm 14.83islk+
hiwhere0 < h; <t mod k. Sincet— (k—1) < lk <lk+h; <lk+(tmod k)=t
ort—(k—1) < lk+h; < t¢,thenumber of squaringsfor thisagorithm hasthe same
bounds as Algorithm 14.82.

Precomputation Multiplications
Algorithm | sg mult sguarings worst case | average case
14.76 0 0 t t t/2
14.79 0 0 t t t/2
14.82 1| 2¢-3 t—(k—1)<Ilk<t -1 12~ —1)/2*
14.83 1] 21 | t—(k-1)<lk+h<t -1 1(2F —1)/2%

Table 14.16: Number of squarings (sg) and multiplications (mult) for exponentiation algorithms.

(i) Simultaneous multiple exponentiation

There are a number of situations which require computation of the product of several ex-
ponentials with distinct bases and distinct exponents (for example, verification of EIGa
mal signatures; see Note 14.91). Rather than computing each exponential separately, Al-
gorithm 14.88 presents a method to do them simultaneousdly.

Leteg,e1,... ,ex_1 bepositiveintegerseach of bitlength ¢; some of the high-order bits
of some of the exponents might be 0, but thereis at least one e; whose high-order bit is 1.
Formak xt array EA (called the exponent array) whoserows arethe binary representations
of the exponentse;, 0 < ¢ < k — 1. Let I; be the non-negative integer whose binary
representation isthe jth column, 1 < j < ¢, of EA, where low-order bits are at the top of
the column.
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14.88 Algorithm Simultaneous multiple exponentiation
INPUT: group elements gg, g1, . . - , gx—1 and non-negative t-bit integerseg, e1, . .. ex_1.
OUTPUT: g5°¢5* -+ - g.* 1"

1. Precomputation. For i from 0 to (2% — 1): G, Hf;ol g;j wherei = (ij_1 - -ig)2.

2. A+1.

3. Forifrom1totdothefollowing: A«A- A, A«~A-Gjy,.

4. Return(A).

14.89 Example (simultaneousmultiple exponentiation) Inthisexample, g3°g1°¢2* iscomputed
using Algorithm 14.88. Let eg = 30 = (11110)3, 3 = 10 = (01010)2, and ez = 24 =
(11000)2. The3 x 5 array EA is:

1 1 1 1 0
0 1 0 1 0
1 1 0 0 O
The next table displays precomputed values from step 1 of Algorithm 14.88.
i 0| 1 2 3 4 5 6 7
Gi || 1|go| 91| gog1 | g2 | gog2 | 9192 | gogi92
Finally, thevalue of A at the end of each iteration of step 3is shown in the following table.
Hee, Iy =5,1,b =7,1I3 =1, 1, = 3, andI5 =0.
i 1 2 3 4 5
A || gog2 | 989195 | gdgigs | 90°ggs” | 96°9i°93"
O

14.90 Note (computational efficiency of Algorithm 14.88)

(i) Algorithm 14.88 computes g5°g5* - - - g, " (Where each e; is represented by ¢ bits)
by performing ¢t — 1 squarings and a most (2% — 2) + ¢ — 1 multiplications. The
multiplication istrivial for any column consisting of all 0’s.

(i) Notall of theG;,0 < i < 2F —1, need to be precomputed, but only for those: whose
binary representation is a column of EA.

14.91 Note (ElGamal signature verification) The signature verification equation for the EIGa-

mal signature scheme (Algorithm 11.64) isa"("™) (a=)" = r* (mod p) wherep isalarge
prime, « a generator of Z;, a“ is the public key, and (r, s) is a signature for message m.
It would appear that three exponentiations and one multiplication are required to verify
the equation. If ¢ = [lgp] and Algorithm 11.64 is applied, the number of squaringsis
3(t — 1) and the number of multiplications is, on average, 3¢/2. Hence, one would ex-
pect to perform about (9¢ — 4) /2 multiplications and squarings modulo p. Algorithm 14.88
can reduce the number of computations substantially if the verification equation is rewrit-
ten as (™ (a=%)"r=* = 1 (mod p). Takinggo = o, g1 = a~ %, go = r,and ey =
h(m) mod (p —1),e; = rmod (p — 1), e2 = —s mod (p — 1) in Algorithm 14.88, the
expected number of multiplicationsand squaringsis (¢t — 1)+ (6+(7t/8)) = (15¢t+40)/8.
(For random exponents, one would expect that, on average, % of the columns of EA will be
non-zero and necessitate a non-trivial multiplication.) Thisis only about 25% more costly
than a single exponentiation computed by Algorithm 14.79.
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14.92

14.93

(iv) Additive notation

Algorithms 14.76 and 14.79 have been described in the setting of a multiplicative group.
Algorithm 14.92 uses the methodol ogy of Algorithm 14.79 to perform efficient multiplica-
tion in an additive group G. (For example, the group formed by the points on an elliptic
curve over afinite field uses additive notation.) Multiplication in an additive group corre-
sponds to exponentiation in a multiplicative group.

Algorithm Left-to-right binary multiplication in an additive group

INPUT: g € G, whereG isan additivegroup, and apositiveinteger e = (eer—1 - - - e1€9)2.
OUTPUT: e g.
1. A<O0.
2. For i from ¢ down to 0 do the following:
21 A+A+ A
22 If e; = 1then A« A +g.

3. Return(A).

Note (theadditivegroup Z,,)

() If G isthe additive group Z,,,, then Algorithm 14.92 provides a method for doing
modular multiplication. For example, if a,b € Z,,, then a - b mod m can be com-
puted using Algorithm 14.92 by taking g = a and e = b, provided b is written in
binary.

(i) If a,b € Zp,,thena < mand b < m. The accumulator A in Algorithm 14.92
never contains an integer as large as 2m; hence, modular reduction of the value in
the accumulator can be performed by a simple subtraction when A > m; thus no
divisions are required.

(iii) Algorithms 14.82 and 14.83 can also be used for modular multiplication. In the case
of the additive group Z,,,, the time required to do modular multiplication can be im-
proved at the expense of precomputing a table of residues modulo m. For aleft-to-
right k-ary exponentiation scheme, the table will contain 2% — 1 residues modulo m.

(v) Montgomery exponentiation

The introductory remarks to §14.3.2 outline an application of the Montgomery reduction
method for exponentiation. Algorithm 14.94 below combines Algorithm 14.79 and Al-
gorithm 14.36 to give a Montgomery exponentiation algorithm for computing € mod m.
Note the definition of m' requiresthat ged(m, R) = 1. For integers v and v where 0 <
u,v < m, define Mont(u, v) to be uv R~ mod m as computed by Algorithm 14.36.
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14.94 Algorithm Montgomery exponentiation

INPUT: m = (my_1---mg)p, R=0",m' = —m 1 mod b, e = (e;---eg)2 Withe; = 1,
andaninteger z, 1 < x < m.
OUTPUT: z¢ mod m.
1. £+ Mont(z, R2 mod m), A+ R mod m. (R mod m and R? mod m may be pro-
vided asinputs.)
2. For i from ¢t down to 0 do the following:
2.1 A+ Mont(A4, A).
2.2 If e; = 1 then A+ Mont(4, ).
3. A< Mont(A4,1).
4. Return(A).

14.95 Example (Montgomery exponentiation) Let z, m, and R be integers suitable asinputsto
Algorithm 14.94. Let e = 11 = (1011)4; here, t = 3. The following table displays the
values of A mod m at the end of each iteration of step 2, and after step 3. |

i 3 2 1 0 Step 3
Amodm || 7 | Z*R™' | °R™* | 2R || Mont(4,1) =3 R~ = 2!

14.96 Note (computational efficiency of Montgomery exponentiation)

(i) Table14.17 displaysthe average number of single-precision multiplicationsrequired
for each step of Algorithm 14.94. The expected number of single-precision multipli-
cations to compute z¢ mod m by Algorithm 14.94is3[(l + 1)(¢t + 1).

(i) Eachiteration of step 2in Algorithm 14.94 applies Algorithm 14.36 at acost of 2{(1+
1) single-precision multiplications but no single-precision divisions. A similar algo-
rithm for modular exponentiation based on classical modular multiplication (Algo-
rithm 14.28) would similarly use 21(I 4 1) single-precision multiplications per iter-
ation but also [ single-precision divisions.

(iii) Any of the other exponentiation algorithms discussed in §14.6.1 can be combined
with Montgomery reduction to give other Montgomery exponentiation algorithms.

Step 1 2 3
Number of Montgomery multiplications 1 3¢ 1
Number of single-precision multiplications || 21(1 +1) | 3tI(I+1) | (I +1)

Table 14.17: Average number of single-precision multiplications per step of Algorithm 14.94.

14.6.2 Fixed-exponent exponentiation algorithms

There are numerous situations in which a number of exponentiations by a fixed exponent
must be performed. Examples include RSA encryption and decryption, and ElGamal de-
cryption. Thissubsection describessel ected algorithmswhichimprovethe repeated square-
and-multiply algorithms of §14.6.1 by reducing the number of multiplications.
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14.97

14.98

14.99

14.100

14.101

14.102

() Addition chains

The purpose of an addition chain is to minimize the number of multiplicationsrequired for
an exponentiation.

Definition Anaddition chain V' of length s for a positive integer e is a sequence ug, u1,
., us Of positiveintegers, and an associated sequencewy, . . . , w; Of pairsw; = (i1,142),
0 <i1,192 < 1, having the following properties:
(i) wo=1landus =e; and
(ii) foreachu;, 1 <i <s,u; = ujy + i,-

Algorithm Addition chain exponentiation

INPUT: agroupelement g, anadditionchain V' = (ug, us, . .. ,us) of length s for apositive
integer e, and the associated sequence wy, . . . , ws, Wherew; = (i1, i2).
OUTPUT: g°.

1. go¢yg.

2. Forifrom1tosdo: gi<gi, - gi,-
3. Return(gs).

Example (addition chain exponentiation) An addition chain of length 5 for e = 15 is
ug = 1,u1 = 2, us = 3, uz = 6, uy = 12, u5 = 15. Thefollowing table displays the

values of w; and g; during each iteration of Algorithm 14.98 for computing g *°. O
i 0 1 2 3 4 5
wi || = | (0,0) | (0,1) | (2,2) | (3,3) | (2,4)
gi g g2 g3 g6 gl2 gl5

Remark (addition chains and binary representations) Given the binary representation of
an exponent e, it isareatively simpletask to construct an addition chain directly from this
representation. Chainsconstructedin thisway generally do not providethe shortest addition
chain possiblefor the given exponent. The methodsfor exponentiationdescribedin §14.6.1
could be phrased in terms of addition chains, but thisis typically not done.

Note (computational efficiency of addition chain exponentiation) Given an addition chain
of length s for the positive integer e, Algorithm 14.98 computes g€ forany g € G, g # 1,
using exactly s multiplications.

Fact If I isthelength of ashortest addition chainfor a positiveinteger e, then! > (Ige +
lgwt(e) — 2.13), where wt(e) is the number of 1's in the binary representation of e. An
upper bound of (|lge] + wt(e) — 1) is obtained by constructing an addition chain for e
from its binary representation. Determining a shortest addition chain for e is known to be
an NP-hard problem.
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14.103

14.104

14.105

14.106

(i) Vector-addition chains

Algorithms 14.88 and 14.104 are useful for computing g¢°g* - - - g," ' where go, g1, - - -,
gx—1 are arbitrary elementsin agroup G and eg, e1, . .. , ex_1 are fixed positive integers.
Thesealgorithmscan al so be used to advantage when the exponentsare not necessarily fixed
values (see Note 14.91). Algorithm 14.104 makes use of vector-addition chains.

Definition Let s and k be positive integers and let v; denote a k-dimensional vector of

non-negativeintegers. Anorderedset V- = {v; : —k+ 1 < i < s} iscalled a vector-
addition chain of length s and dimension k if V satisfies the following:

() Eachv;,—k+ 1 < <0, hasa0 in each coordinate position, except for coordinate

positioni + k — 1, whichisa1. (Coordinate positions are labeled 0 through k& — 1.)

(i) Foreachwv;, 1 < i < s, thereexists an associated pair of integers w; = (i1, 42) such
that —k +1 <iq1,i9 <itandwv; = Vi, + Uiy (il =19 ISa”OWGj)

Example 14.105 illustrates a sample vector-addition chain. Let V = {v; : -k + 1 <
i < s} be avector-addition chain of length s and dimension & with associated sequence
wi, ... ,ws. Algorithm 14.104 computes g5° g5* - - - g, ' wherev, = (eq, e1,... ,ex_1).

Algorithm Vector-addition chain exponentiation

INPUT: group elements go, g1, - - . , gx—1 and avector-addition chain V' of length s and di-
mension k with associated sequence wy, . .. , ws, Wherew; = (i1, i2).
OUTPUT: g5°g7* - - -ng:ll wherev, = (eg, €1, .. ,€k—1).

1. Forifrom(—k+1)t00do: a;<¢gitk—1-

2. Forifrom1to s do: a;<a;, - a;,.

3. Return(ay).

Example (vector-addition chainexponentiation) A vector-additionchain V' of length s =
9 and dimension k = 3 isdisplayed in the following table.

[oe [o T T [ v T [ ou [os o [or [ s [ ]
1 0 0 1 2 2 3 5 6 12 | 15 | 30
0 1 0 0 0 1 1 2 2 4 5 10
0 0 1 1 2 2 2 4 5 10 | 12 | 24

The following table displays the values of w; and a; during each iteration of step 2 in Al-

gorithm 14.104 for computing g3°g1%g3*. Nine multiplications are required. O
7 1 2 3 4 5 6 7 8 9
ai || gog2 | 9395 | 989193 | 959193 | 909392 | 909195 | 909192’ | 96°97 92" | 95 91 95"

Note (computational efficiency of vector-addition chain exponentiation)

(i) (multiplications) Algorithm 14.104 performs exactly s multiplications for a vector-
addition chain of length s. To computegg°gi* - - - go* ' using Algorithm 14.104, one
would like to find a vector-addition chain of length s and dimension & with v, =
(eo,e€1,... ,er—1), Where s isas small as possible (see Fact 14.107).
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14.107

14.108

(i) (storage) Algorithm 14.104 requiresintermediate storage for the lementsa;, —k +
1 < i < t,at thet'™ iteration of step 2. If not all of these are required for succeeding
iterations, then they need not be stored. Algorithm 14.88 provides a special case of
Algorithm 14.104 where the intermediate storage is no larger than 2% — 1 vectors of
dimension k.

Fact Theminimum valueof s in Note 14.106(i) satisfies the following bound, where M =
max{e; : 0 <i <k — 1} and c isaconstant:

s<k—-1+4+1gM+ck-lgM/lglg(M + 2).

Example (vector-addition chainsfrom binary representations) The vector-addition chain
implicit in Algorithm 14.88 is not necessarily of minimum length. The vector-addition
chain associated with Example 14.89 is displayed in Table 14.18. This chainislonger than
the one used in Example 14.105. The advantage of Algorithm 14.88 is that the vector-
addition chain does not have to be explicitly provided to the algorithm. In view of this,
Algorithm 14.88 can be applied more generally to situations where the exponents are not
necessarily fixed. a

| V_2 | v_1 | Vo | V1 | V2 | V3 | V4 | Vs | Ve | v7 | (% | V9 | V10 |
1 0 0 1 1 1 2 3 6 7|14 (15| 30
0 1 0 1 1 0 0 1 2 2 4 5 10
0 0 1 0 1 1 2 3 6 6 12 | 12 | 24

Table 14.18: Binary vector-addition chain exponentiation (see Example 14.108).

14.6.3 Fixed-base exponentiation algorithms

Three methods are presented for exponentiation when the base g is fixed and the exponent
e varies. With afixed base, precomputation can be done once and used for many exponen-
tiations. For example, Diffie-Hellman key agreement (Protocol 12.47) requires the compu-
tation of o”, where o is afixed element in Z;,.

For each of the algorithmsdescribed in thissection, {bo, b1, . . . , b;} isaset of integers
for somet > 0, such that any exponent e > 1 (suitably bounded) can be written ase =
ZEZO e;b;, where 0 < e; < h for some fixed positive integer h. For example, if e is any
(t + 1)-digit base b integer with b > 2, then b, = b and h = b are possible choices.

Algorithms 14.109 and 14.113 are two fixed-base exponentiation methods. Both re-
quire precomputation of theexponentialsg®, g1, . .. , g**, eg., using oneof theal gorithms
from §14.6.1. The precomputation needed for Algorithm 14.117ismoreinvolved andis ex-
plicitly described in Algorithm 14.116.

(i) Fixed-base windowing method

Algorithm 14.109 takes as input the precomputed exponentials g; = g%, 0 < i < t, and
positiveintegers h and e = ZEZO e;b; where0 < e; < h,0 < ¢ < t. Thebasisfor the

algorithm is the observation that ¢g¢ = ]‘[f=0 gt = H;:f(l_[e,;:j gi).
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14.109

14.110

14.111

14.112

14.113

Algorithm Fixed-base windowing method for exponentiation

INPUT: {g%, g™, ... g%}, e="_, e:bi, and .
OUTPUT: ¢°.

1. A1, B+1.
2. For j from (h — 1) downto 1 do the following:

2.1 For each i for whiche; = j do: B« B - ¢g%.
22 A+—A-B.

3. Return(A).

Example (fixed-base windowing exponentiation) Precompute the group elements g, ¢4,
g*¢, g4, ¢%5%. To compute g¢ for e = 862 = (31132),, taket = 4, h = 4, and b; = 4° for
0 <1 < 4,inAlgorithm 14.109. Thefollowing table displays the values of A and B at the
end of each iteration of step 2. a

=1 s [ 2 | !
B 1 949256 — 9260 92609 — 9261 9261916964 — g341

A 1 9260 92609261 — 9521 95219341 — 9862

Note (computational efficiency of fixed-base windowing exponentiation)

(i) (number of multiplications) Supposet + A > 2. Only multiplications where both
operandsaredistinct from 1 arecounted. Step 2.2 isexecuted h — 1 times, but at |east
one of these multiplicationsinvolves an operand with value 1 (A isinitialized to 1).
Since B isdsoinitially 1, at most ¢t multiplicationsare donein step 2.1. Thus, Algo-
rithm 14.109 computes g¢ with at most ¢ + h — 2 multiplications (cf. Note 14.112).

(ii) (storage) Storageisrequired for thet + 1 group elementsg;, 0 < i < t.

Note (a particular case) The most obvious application of Algorithm 14.109 is the case
where the exponent e isrepresented inradix b. If e = 25:0 e;b', theng; = ¢*",0 < i <t,
are precomputed. If e israndomly selected from {0,1,... ,m —1},thent+ 1 < [log, m]
and, on average, % of the base b digitsin e will be 0. In this case, the expected number of
multiplicationsis 272 [log, m] + b — 3. If m isa512-bitinteger and b = 32, then 128.8
multiplications are needed on average, 132 in the worst case; 103 values must be stored.

(ii) Fixed-base Euclidean method

Let {xo,z1,..., 2} beaset of integerswith¢ > 2. Define M to be an integer in the
interva [0, t] suchthat za; > x; foral 0 < i < ¢. Define NV to bean integer in theinterval
[0,t], N # M,suchthatey >e; foral 0 <i <t,i# M.

Algorithm Fixed-base Euclidean method for exponentiation
INPUT: {g%, g™, ... ,g®}ande = 0_, eib;.
OUTPUT: g©.

1. For i from0 to ¢ do thefollowing: g;< g%, z;<e;.
2. Determinetheindices M and N for {zg,z1,... , 2t}
3. Whilezy # 0 do thefollowing:

31 g—|zm/xn], gn(9m)? - 9N, Tar—2p mod T .
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14.114

14.115

3.2 Determinetheindices M and N for {zg,z1,... , 2}
4. Return(gy ).

Example (fixed-baseEuclidean method) Thisexamplerepeatsthe computationof g€, e =
862 donein Example 14.110, but now uses Algorithm 14.113. Takeby = 1, by = 16, by =
256. Thene = (3,5,14)16. Precompute g', g'¢, ¢?°¢. Table 14.19 illustrates the steps
performed by Algorithm 14.113. Notice that for this example, Algorithm 14.113 does 8

v oo [ M[N]a|o ]| o [ o]

4|5 3o |12 g | g®|g*>®°
4 5 3 1 0 1 glg gls 9256
4 1 3 0 2 1 glg gls 9275
1 1 3 2 1 3 919 9843 g275
1 1 0 0 1 1 919 9862 g275
0 1 0 1 0 _ 919 9862 9275

Table 14.19: Fixed-base Euclidean method to compute ¢*%? (see Example 14.114).

multiplications, whereas Algorithm 14.109 needs only 6 to do the same computation. Stor-
age requirements for Algorithm 14.113 are, however, smaller. The vector-addition chain
(Definition 14.103) corresponding to this exampleis displayed in the following table. [

(o [o oo [ [ o T [ ou [ os oo o7 [ s ]
1 0 0 2 2 3 3 6 9 11 | 14
0 1 0 0 1 1 1 2 3 4 5
0 0 1 0 0 0 1 2 3 3 3

Note (fixed-base Euclidean vs. fixed-base windowing methods)

(i) In most cases, the quatient ¢ computed in step 3.1 of Algorithm 14.113is1. For a
given base b, the computational requirements of this algorithm are not significantly
greater than those of Algorithm 14.1009.

(if) Sincethedivisionagorithmislogarithmicinthesize of theinputs, Algorithm 14.113
can take advantage of alarger value of h than Algorithm 14.109. Thisresultsin less
storage for precomputed values.

(iii) Fixed-base comb method

Algorithm 14.117 computes g¢ wheree = (eier—1 - - - e1e0)2, t > 1. Select an integer h,
1< h<t+1landcomputea = [(t+1)/h]. Select aninteger v, 1 < v < a, and compute
b = [a/v]. Clearly,ah > t + 1. Let X = Rp,_1||Rn—2||---||Ro be abitstring formed
from e by padding (if necessary) e on the left with 0's, so that X has bitlength ah and each
R;,0 <1 < h—1,isabitstring of length a. Forman h x a array EA (called the exponent
array) whererow 7 of EA isthe bitstring R;, 0 < ¢ < h — 1. Algorithm 14.116 is the
precomputation required for Algorithm 14.117.
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14.116 Algorithm Precomputation for Algorithm 14.117

14.117

14.118

INPUT: group element g and parameters h, v, a, and b (defined above).
OUTPUT: {G[j][i] : 1<i<2" 0<j<u}.
1. Forifrom0to (h — 1) do: g;«—g*".
2. Forifrom1to (2" — 1) (wherei = (ij,_1 - - -ig)2), do the following:
21 GO][il+ T}= 97
2.2 For j from 1 to (v — 1) do: G[][i]«(G[0][i])?" .
3. Return({G[j][i] : 1 <i< 2" 0<j<v}).

LetI; 0 <k <b,0<j < v, betheinteger whose binary representation is column
(jb+ k) of EA, wherecolumn0 ison theright and the least significant bits of acolumn are
at the top.

Algorithm Fixed-base comb method for exponentiation

INPUT: g,e and {G[j][i] : 1 <i < 2" 0<j < v} (precomputedin Algorithm 14.116).
OUTPUT: g°.

1 A+
2. For k from (b — 1) down to 0 do the following:

21 A+A- A

2.2 For j from (v — 1) down to 0 do: A<GJ[j][L; ] - A.
3. Return(A).

Example (fixed-base comb method for exponentiation) Lett = 9 and h = 3; thena =
[10/3] = 4. Letv = 2; thenb = [a/v] = 2. Suppose the exponent input to Algo-
rithm 14.117 ise = (eges---e1ep)2. Form the bitstring X = z11210 - - 2120 Where
x; = e¢,0 < i <9 andxy; = x19 = 0. Thefollowing table displays the exponent
array FA.

I Lo Ioax  Joo
x3 x2 x1 xo
T Te Is5 T4
11 x10 9 x8

Theprecomputed valuesfrom Algorithm 14.116 aredisplayed below. Recall that g; = g2m ,
0<i<3.

|« [1 2 3 4 5 6 7

GOJ[i] | g0 91 9190 g2 9290 G291 929190
Gl | 9o g1 gigo 92 9290 9291  929igo
Finally, the following table displays the stepsin Algorithm 14.117 for EA.

A= géogi1 gé2
k ] lo ll 12
1| - 0 0 0
1 1 41'3 41'7 41'11
1 0 43 + x1 dx7 + x5 4x11 + 9
0| — 8xrs + 2x1 87 + 2x5 8x11 + 2x9
0 1 8xs + 2x1 + 42 8xr7 + 2x5 + 4xg 8x11 + 2x9 + 410
0| 0 || 8z3+2x1+4x2 + w0 | 8T7 + 2x5 + 4z + T4 | 8T11 + 2x9 + 410 + T8
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Thelast row of the table correspondsto gZiio 22! g©. O

14.119 Note (computational efficiency of fixed-base comb method)

(i) (number of multiplications) Algorithm 14.117 requires at most one multiplication for
each column of EA. Theright-most column of EA requiresamultiplication with the
initial value 1 of the accumulator A. The algorithm also requires a squaring of the
accumulator A foreach k, 0 < k < b, except for k = b — 1 when A has value
1. Discounting multiplications by 1, the total number of non-trivial multiplications
(including squarings) is, at most, a + b — 2.

(ii) (storage) Algorithm 14.117 requires storage for the v(2" — 1) precomputed group
elements (Algorithm 14.116). If squaring is arelatively simple operation compared
to multiplication in the group, then some space-saving can be achieved by storing
only 2" — 1 group elements (i.e., only those elements computed in step 2.1 of Algo-
rithm 14.116).

(iii) (trade-offs) Since h and v are independent of the number of bits in the exponent, se-
lection of these parameters can be made based on the amount of storage availablevs.
the amount of time (determined by multiplication) to do the computation.

14.7 Exponent recoding

Another approach to reducing the number of multiplicationsin the basic repeated square-
and-multiply algorithms (§14.6.1) is to replace the binary representation of the exponent e
with a representation which has fewer non-zero terms. Since the binary representation is
unique (Fact 14.1), finding a representation with fewer non-zero components necessitates
the use of digitsbesides 0 and 1. Transforming an exponent from one representation to an-
other is called exponent recoding. Many techniques for exponent recoding have been pro-
posed in the literature. This section describestwo possibilities: signed-digit representation
(§14.7.1) and string-replacement representation (§14.7.2).

14.7.1 Signed-digit representation

14.120 Definition If e = Y'_ d;2" whered; € {0,1,-1},0 < i < t, then (d; - - - d1do)sp is
called a signed-digit representation with radix 2 for the integer e.

Unlike the binary representation, the signed-digit representation of an integer is not
unique. Thebinary representation is an example of asigned-digit representation. Let e bea
positiveinteger whosebinary representationis (e;+1ete:—1 - - - e1e9)2, Witheg 11 = e; = 0.
Algorithm 14.121 constructs a signed-digit representation for e having at most ¢ + 1 digits
and the smallest possible number of non-zero terms.
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14.121 Algorithm Signed-digit exponent recoding

INPUT: apositiveinteger e = (e¢1etet—1 - - - e1eg)2 Withe;11 = e, = 0.
OUTPUT: asigned-digit representation (d - - - d1dp)sp for e. (See Definition 14.120.)
1. C()<—0.
2. For i from 0 to ¢ do the following:
21 Ci+1<—t(€i +eit1 + Ci)/2J, di<—e; +c; — 2¢i41.-
3. Return((d¢ - - - d1do)sp)-

14.122 Example (signed-digit exponent recoding) Table 14.20 lists all possible inputs to the it"
iteration of step 2, and the corresponding outputs. If e = (1101110111)5, then Algo-
rithm 14.121 produces the signed-digit representation e = (10010001001) sp where 1 =

—1.Notethate =29 +28 426 + 25 424 422 4241 =210 2723 1, O
inputs e 0 0 0 0 1 1 1 1
ci o0 1 1 0 o0 1 1
€i+1 O 1 O 1 0 1 0 1
outputs | ¢;41 || 0 O O 1 0 1 1 1
d; 00 1 -1 1 -1 0 0

Table 14.20: Sgned-digit exponent recoding (see Example 14.122).

14.123 Definition A signed-digit representation of aninteger e is said to be sparseif no two non-
zero entries are adjacent in the representation.

14.124 Fact (sparsesigned-digit representation)
(i) Every integer e has a unique sparse signed-digit representation.
(i) A sparsesigned-digit representationfor e hasthe smallest number of non-zero entries
among all signed-digit representationsfor e.
(iii) The signed-digit representation produced by Algorithm 14.121 is sparse.

14.125 Note (computational efficiency of signed-digit exponent recoding)

(i) Signed-digit exponent recoding as per Algorithm 14.121 isvery efficient, and can be
done by table look-up (using Table 14.20).

(ii) When e isgiven in a signed-digit representation, computing ¢g¢ requires both ¢ and
g~ L. If gisafixed base, then g—! can be precomputed. For avariable base g, unless
¢~ ! can be computed very quickly, recoding an exponent to signed-digit representa-
tion may not be worthwhile.

14.7.2 String-replacement representation

14.126 Definition Let & > 1 be a positive integer. A non-negative integer e is said to have a
k-ary string-replacement representation (f; 1 f:—2 - - - f1.fo) sr(x), denoted SR(k), if e =
St f2andfie {2 —1:0<j<k}for0<i<t-—1.
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14.127

14.128

14.129

14.130

14.131

14.132

Example (non-uniqueness of string-replacement representations) A string-replacement
representation for a non-negative integer is generally not unique. The binary representa-
tionisal-ary string-replacement representation. If k = 3 ande = 987 = (1111011011)5,
then some other string-replacements of e are (303003003) sz(3), (1007003003) 53y, and
(71003003) s5(3)- O

Algorithm k-ary string-replacement representation

INPUT: e = (e;—1€¢—2 - - - €1€9)2 and positive integer k > 2.
OUTPUT: e = (fi—1ft—2--- f1.fo) sr(k)-
1. For i from k down to 2 do the following: starting with the most significant digit of
e = (er—1e1—2 - - - €1€0)2, replace each consecutive string of ¢ ones with a string of
length i consisting of ¢ — 1 zeros in the high-order string positions and the integer
2¢ — 1 in the low-order position.

2. Return((fi—1fi—2- - f1fo)sr))-

Example (k-ary string-replacement) Supposee = (110111110011101)2and k = 3. The
SR(3) representations of e at the end of each of the two iterations of Algorithm 14.128 are
(110007110000701) g3y and (030007030000701) sr(3) - O

Algorithm Exponentiation using an SR (k) representation

INPUT: aninteger £ > 2, anelementg € G,ande = (fi—1ft—2--- f1.fo) sr(r)-
OUTPUT: ¢°.
1. Precomputation. Set g;<—g. For i from2to k do: goi _1¢(gai-1_1)? - g.
2. A«1.
3. For i from (¢ — 1) down to 0 do the following:
31 A+A- A
32 If f; #0then A—A- gy,.

4. Return(A).

Example (SR(k) vs. left-to-right binary exponentiation) Let e = 987 = (1111011011)s
and consider the 3-ary string-replacement representation (0071003003) sr(s). Computing
g°¢ using Algorithm 14.79 requires 9 squarings and 7 multiplications. Algorithm 14.130
requires 2 squarings and 2 multiplications for computing ¢ and ¢”, and then 7 squarings
and 3 multiplicationsfor the main part of the algorithm. Intotal, the SR(3) for e computes
g€ with 9 squarings and 5 multiplications. O

Note (computational efficiency of Algorithm 14.130) The precomputation requires k — 1
squarings and k£ — 1 multiplications. Algorithm 14.128 is not guaranteed to produce an
SR(k) representation with aminimum number of non-zero entries, but in practiceit seems
to give representationswhich are closeto minimal. Heuristic argumentsindicatethat aran-
domly selected ¢-bit exponent will be encoded with asuitably chosenvalueof k toan SR (k)
representation having about ¢ /4 non-zero entries, hence, one expectsto perform¢— 1 squar-
ingsin step 3, and about ¢ /4 multiplications.
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14.8 Notes and further references

§14.1

§14.2

This chapter deals amost exclusively with methods to perform operations in the integers
and the integers modulo some positive integer. When p is a prime number, Z,, is caled a
finite field (Fact 2.184). There are other finite fields which have significance in cryptogra-
phy. Of particular importance are those of characteristic two, F o= . Perhapsthe most useful
property of these structuresis that squaring is alinear operator (i.e., if a, 8 € Fam, then
(a + B)% = o? + 3?). This property leads to efficient methods for exponentiation and for
inversion. Characteristic two finite fields have been used extensively in connection with
error-correcting codes; for example, see Berlekamp [118] and Lin and Costello [769]. For
error-correcting codes, m is typicaly quite smal (e.g., 1 < m < 16); for cryptographic
applications, m is usually much larger (e.g., m > 100).

The magjority of the algorithms presented in this chapter are best suited to software imple-
mentations. There is avast literature on methods to perform modular multiplication and
other operations in hardware. The basis for most hardware implementations for modular
multiplicationis efficient methodsfor integer addition. In particular, carry-save addersand
delayed-carry adders are at the heart of the best methods to perform modular multiplica
tion. The concept of a delayed-carry adder was proposed by Norris and Simmons [933] to
produce a hardware modular multiplier which computes the product of two ¢-bit operands
modulo a ¢t-bit modulus in 2t clock cycles. Brickell [199] improved the ideato produce a
modular multiplier requiring only ¢ + 7 clock cycles. Enhancements of Brickell’s method
were given by Walter [1230]. Kog [699] gives a comprehensive survey of hardware meth-
ods for modular multiplication.

For atreatment of radix representationsincluding mixed-radix representations, see Knuth
[692]. Knuth describes efficient methods for performing radix conversions. Representing
and manipulating negative numbers is an important topic; for an introduction, consult the
book by Koren [706].

Thetechniquesdescribed in §14.2 are commonly referred to as the classical algorithmsfor
multiple-precision addition, subtraction, multiplication, and division. These algorithmsare
themost useful for integers of the size used for cryptographic purposes. For much larger in-
tegers (on the order of thousands of decimal digits), more efficient methodsexist. Although
not of current practical interest, some of these may become more useful as security require-
ments force practitioners to increase parameter sizes. The Karatsuba-Ofman method, de-
scribed next, is practical in some situations.

Theclassical algorithm for multiplication (Algorithm 14.12) takes O(n?) bit operationsfor
multiplying two n-bit integers. A recursive algorithm due to Karatsuba and Ofman [661]
reduces the complexity of multiplying two n-bit integers to O(n!-58). This divide-and-
conquer method is based on the following simple observation. Supposethat = and y aren-
bitintegersandn = 2t. Thenx = 2tz +x¢ andy = 2%y, +yo, Wherez, y; arethet high-
order bits of = and y, respectively, and ¢, yo arethet low-order bits. Furthermore, x -y =
UQ22t+U12t +ug Whereug = xg Yo, U2 = T1°Y1 andu; = ({170 +{171) . (y0+y1) —Ug— U.
It followsthat z - y can be computed by performing three multiplications of ¢-bit integers
(as opposed to one multiplication with 2¢-bit integers) along with two additions and two
subtractions. For large values of ¢, the cost of the additions and subtractions is insignifi-
cant relative to the cost of the multiplications. With appropriate modifications, ug, u; and
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(zo + 1) - (yo + y1) can each be computed similarly. This procedure s continued on the
intermediate values until the size of the integers reachesthe word size of the computing de-
vice, and multiplication can be efficiently accomplished. Dueto the recursive nature of the
algorithm, anumber of intermediate results must be stored which can add significant over-
head, and detract from the algorithm’s efficiency for relatively small integers. Combining
the Karatsuba-Of man method with classical multiplication may have some practical signif-
icance. For amore detailed treatment of the Karatsuba-Ofman algorithm, see Knuth [692],
Kog [698], and Geddes, Czapor, and Labahn [445].

Another commonly used method for multiple-precisioninteger multiplicationisthediscrete
Fourier transform (DFT). Although mathematically elegant and asymptotically better than
the classical algorithm, it does not appear to be superior for the size of integers of practical
importance to cryptography. Lipson [770] provides a well-motivated and easily readable
treatment of this method.

Theidentity givenin Note 14.18 was known to Karatsuba and Ofman [661].

There is an extensive literature on methods for multiple-precision modular arithmetic. A
detailed treatment of methodsfor performing modular multiplication can befound in Knuth
[692]. Kog [698] and Bosselaers, Govaerts, and Vandewalle [176] provide comprehensive
but brief descriptions of the classical method for modular multiplication.

Montgomery reduction (Algorithm 14.32) is due to Montgomery [893], and is one of the
most widely used methodsin practice for performing modular exponentiation (Algorithm
14.94). Dussé and Kaliski [361] discuss variants of Montgomery’s method. Montgomery
reduction is a generalization of a much older technique due to Hensel (see Shand and
Vuillemin [1119] and Bosselaers, Govaerts, and Vandewalle [176]). Hensel's observation
isthe following. If m isan odd positive integer less than 2% (k apositiveinteger) and T is
some integer such that 28 < T < 2%¢ then Ry = (T + qom)/2, where gqo = T mod 2
isaninteger and Ry = 727! mod m. More generdly, R; = (R;_1 + q:m)/2, where
¢; = Ri_1 mod 2 isaninteger and R; = N27T! mod m. Since T < 22*, it follows that
Ri_1 < 2m.

Barrett reduction (Algorithm 14.42) is due to Barrett [75]. Bosselaers, Govaerts, and Van-
dewalle [176] provide a clear and concise description of the algorithm along with motiva-
tion and justification for various choices of parameters and steps, and compare three alter-
native methods: classical (§14.3.1), Montgomery reduction (§14.3.2), and Barrett reduction
(§14.3.3). Thiscomparisonindicatesthat thereisnot asignificant differencein performance
between the three methods, provided the precomputation necessary for Montgomery and
Barrett reduction is ignored. Montgomery exponentiation is shown to be somewhat better
than the other two methods. The conclusions are based on both theoretical analysis and
machineimplementation for various sized moduli. Kog, Acar, and Kaliski [700] providea
more detail ed comparison of various Montgomery multiplication al gorithms; see a so Nac-
cache, M’ Raihi, and Raphaeli [915]. Naccache and M’silti [917] provide proofs for the
correctness of Barrett reduction along with a possible optimization.

Mohan and Adiga [890] describe a special case of Algorithm 14.47 whereb = 2.

Hong, Oh, and Yoon [561] proposed new methods for modular multiplication and modu-
lar squaring. They report improvementsof 50% and 30%, respectively, on execution times
over Montgomery’s method for multiplication and squaring. Their approach to modular
multiplication interleaves multiplication and modular reduction and uses precomputed ta-
bles such that one operand is always single-precision. Squaring uses recursion and pre-
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§14.4
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computed tables and, unlike Montgomery’s method, also integrates the multiplication and
reduction steps.

The binary gcd algorithm (Algorithm 14.54) is due to Stein [1170]. An analysis of the al-
gorithm is given by Knuth [692]. Harris [542] proposed an algorithm for computing ged's
which combinesthe classical Euclidean agorithm (Algorithm 2.104) and binary operations;
the method is called the binary Euclidean algorithm.

Lehmer’sged algorithm (Algorithm 14.57), dueto Lehmer [ 743], determinesthe ged of two
positive multiple-precision integers using mostly single-precision operations. This has the
advantage of using the hardware divide in the machine and only periodically resorting to
an algorithm such as Algorithm 14.20 for a multiple-precision divide. Knuth [692] givesa
comprehensive description of the algorithm along with motivation of its correctness. Co-
hen [263] provides a similar discussion, but without motivation. Lehmer’s gcd agorithm
is readily adapted to the extended Euclidean al gorithm (Algorithm 2.107).

According to Sorenson [1164], the binary gcd algorithm is the most efficient method for
computing the greatest common divisor. Jebelean [633] suggests that Lehmer’s gcd algo-
rithm is more efficient. Sorenson [1164] also describes a k-ary version of the binary gcd
agorithm, and proves aworst-case running time of O(n?/ 1gn) bit operationsfor comput-
ing the gcd of two n-bit integers.

The binary extended gcd a gorithm was first described by Knuth [692], who attributesit to
Penk. Algorithm 14.61 is dueto Bach and Shallit [ 70], who al so give acomprehensive and
clear analysisof several gcd and extended ged algorithms. Norton[934] described aversion
of the binary extended gcd al gorithm which is somewhat more complicated than Algorithm
14.61. Gordon [516] proposed amethod for computing modular inverses, derived from the
classical extended Euclidean algorithm (Algorithm 2.107) with multiple-precisiondivision
replaced by an approximation to the quotient by an appropriate power of 2; no analysis of
the expected running time is given, but observed results on moduli of specific sizes are de-
scribed.

TheMontgomeryinverseof a mod m isdefinedtobea 12! mod m wheret isthebitlength
of m. Kaliski [653] extended ideas of Guyot [534] on the right-shift binary extended Eu-
clidean algorithm, and presented an algorithm for computing the Montgomery inverse.

Letm;, 1 < i < t, beaset of pairwise relatively prime positive integers which define a
residue number system (RNS). If n = ]‘[ﬁ=1 m; thenthisRNS providesan effectivemethod
for computing the product of integers modul o n where the integers and the product are rep-
resented in the RNS. If n is a positive integer where the m; do not necessarily divide n,
then amethod for performing arithmetic modulo » entirely within the RNS is not obvious.
Couveignes[284] and Montgomery and Silverman [895] propose an interesting method for
accomplishing this. Further research in the areaisrequired to determineif thisapproachis

competitive with or better than the modular multiplication methods described in §14.3.

Algorithm 14.71 is due to Garner [443]. A detailed discussion of this algorithm and vari-
ants of it are given by Knuth [692]; see also Cohen [263]. Algorithm 2.121 for applying
the Chinese remainder theorem is due to Gauss; see Bach and Shallit [70]. Gauss's algo-
rithmis a special case of the following result due to Nagasaka, Shiue, and Ho [918]. The
solution to the system of linear congruences z = a; (mod m;), 1 < i < ¢, for pair-
wise relative prime moduli m;, is equivalent to the solution to the single linear congru-
ence (Yi_, biMy)z = Yi_, a;b;M; (mod M) where M = [[i_, mi, M; = M/m;
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for1 < i < t, for any choice of integers b; where gcd (b;, M;) = 1. Notice that if
Zﬁzl biM; =1 (mod M), thenb; = M[l (mod m;), giving the special case discussed
in Algorithm 2.121. Quisquater and Couvreur [1016] were the first to apply the Chinese
remainder theorem to RSA decryption and signature generation.

Knuth[692] and Bach and Shallit [ 70] describetheright-to-left binary exponentiation meth-
od (Algorithm 14.76). Cohen [263] provides a more comprehensive treatment of the right-
to-left and left-to-right (Algorithm 14.79) binary methods along with their generalizations
tothe k-ary method. Kog[698] discussesthese a gorithmsin the context of the RSA public-
key cryptosystem. Algorithm 14.92 is the basis for Blakley’s modular multiplication algo-
rithm (see Blakley [149] and Ko¢ [698]). Thegeneralization of Blakley’smethod to process
more than one bit per iteration (Note 14.93(iii)) is due to Quisquater and Couvreur [1016].
Quisguater and Couvreur describe an algorithm for modular exponentiation which makes
use of the generalization and precomputed tables to accelerate multiplicationin Z,, .

For a comprehensive and detailed discussion of addition chains, see Knuth [692], where
various methods for constructing addition chains (such as the power tree and factor meth-
ods) are described. Computing the shortest addition chain for apositiveinteger was shown
to be an NP-hard problem by Downey, Leong, and Sethi [360]. The lower bound on the
length of a shortest addition chain (Fact 14.102) was proven by Schonhage [1101].

An addition sequence for positiveintegersa; < as < --- < ay isan addition chain for
ar inwhich ay,as, ... ,a,_1 appear. Yao [1257] proved that there exists an addition se-
quencefora; < az < -+ < ay Of length less than lgay, + ck - lgar/l1glg(ar + 2)
for some constant ¢. Olivos [955] established a 1-1 correspondence between addition se-
guencesof lengthl fora; < as < --- < a; and vector-addition chains of lengthl + k£ — 1
where v 1 = (a1,a2,...,ax). These results are the basis for the inequality given in
Fact 14.107. Bos and Coster [173] described a heuristic method for computing vector-
addition chains. The special case of Algorithm 14.104 (Algorithm 14.88) is attributed by
ElGamal [368] to Shamir.

The fixed-base windowing method (Algorithm 14.109) for exponentiation is due to Brick-
ell et al. [204], who describe a number of variants of the basic algorithm. For b a positive
integer, let S be a set of integerswith the property that any integer can be expressed in base
b using only coefficientsfrom S. S is called abasic digit set for the base b. Brickell et al.
show how basic digit sets can be used to reduce the amount of work in Algorithm 14.109
without large increases in storage requirements. De Rooij [316] proposed the fixed-base
Euclidean method (Algorithm 14.113) for exponentiati on; comparesthisalgorithmto Algo-
rithm 14.109; and providesatabl e of valuesfor numbersof practical importance. Thefixed-
base comb method (Algorithm 14.117) for exponentiationisdueto Lim and Lee [767]. For
agiven exponent size, they discuss various possibilities for the choice of parameters h and
v, along with a comparison of their method to fixed-base windowing.

The signed-digit exponent recoding algorithm (Algorithm 14.121) is due to Reitwiesner
[1031]. A simpler description of the algorithm was given by Hwang [566]. Booth [171]
described another algorithm for producing a signed-digit representation, but not necessar-
ily onewith the minimum possible non-zero components. It wasoriginally givenin termsof
the additive group of integers where exponentiationis referred to as multiplication. In this
case, —g iseasily computed from g. The additive abelian group formed from the points on
an dliptic curve over afinite field is another example where signed-digit representation is
very useful (see Morainand Olivos[904]). Zhang [1267] described amodified signed-digit

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



634

Ch. 14 Efficient Implementation

representation which requires on average t/3 multiplications for a square-and-multiply al-
gorithmfor ¢-bit exponents. A slightly moregeneral version of Algorithm 14.121, given by
Jedwab and Mitchell [634], does not requireasinput abinary representation of the exponent
e but simply asigned-digit representation. For binary inputs, the a gorithms of Reitwiesner
and Jedwab-Mitchell are the same. Fact 14.124 is due to Jedwab and Mitchell [634].

String-replacement representationswereintroduced by Gollmann, Han, and Mitchell [497],
who describe Algorithms 14.128 and 14.130. They also providean analysis of the expected
number of non-zero entriesin an SR (k) representation for arandomly selected ¢-bit expo-
nent (see Note 14.132), as well as a complexity analysis of Algorithm 14.130 for various
values of ¢ and k. Lam and Hui [735] proposed an alternate string-replacement algorithm.
Theideais to precompute al odd powers g, g3, ¢, . .. , g2 ! for some fixed positive in-
teger k. Given at-hit exponent e, start at the most significant bit, and look for the longest
bitstring of bitlength at most k£ whose last digitisal (i.e., this substring represents an odd
positiveinteger between 1 and 2% — 1). Applying aleft-to-right square-and-multiply expo-
nentiation algorithm based on this scanning process results in an algorithm which requires,
at most, [¢/k] multiplications. Lam and Hui proved that ast increases, the average number
of multiplications approaches [t/ (k + 1)].
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